
STL Data Structures
Tyler Sorey
Invited Lecture
December 3, 2018

Overview

std::array

● Fixed size container
○ Size must be known at compile time

● Realistically, use a vector

 // construction uses aggregate

initialization

 std::array<int, 3> arr{ {2, 1, 3} };

 // double-braces required in 11 (not in 14)

 // container operations are supported

 std::sort(arr.begin(), arr.end());

 // ranged for loop is supported

 for(const auto& s: arr)

 std::cout << s << ' ';

 // prints: 1, 2, 3

std::vector

● Dynamically sized array
● Contiguous in memory
● Random access: O(1)
● Insertion/Deletion at end: O(1)
● Insertion/Deletion: O(n)
● Size is handled automatically, which is

good and bad
○ Allocations are costly as everything is

copied on expansion
■ g++ doubles the size each time

● “reserve” is a beautiful thing

 // Create a vector containing integers

 std::vector<int> v;

 v.reserve(2);

 // Add two more integers to vector

 v.push_back(25);

 v.push_back(13);

 // Iterate and print values of vector

 for(int n : v)

 std::cout << n << '\n';

 // prints: 25, 13

std::list

● Not contiguous in memory
● Doubly-linked list
● Insertion/Deletion: O(1)*

○ Need iterator to location
○ Fast random access not supported

● Good if splitting/joining lists frequently

 // Create a list containing integers

 std::list<int> l = { 7, 5, 16, 8 };

 // Add an integer to the front of the list

 l.push_front(25);

 // Add an integer to the back of the list

 l.push_back(13);

 // Insert an integer before 16 by searching

 auto it = std::find(l.begin(), l.end(), 16);

 if (it != l.end())

 l.insert(it, 42);

 // Iterate and print values of the list

 for (auto n : l)

 std::cout << n << '\n';

 // prints: 25, 7, 5, 42, 16, 8, 13

std::deque

● Double-ended queue
○ Fast insertions/deletions at front or back

● Not contiguous in memory
● Elements not copied on storage expansion

(cheaper than vector)
● Same big O complexity as vector
● Lots of memory overhead for small deque

○ I.e. for a deque with 1 element it would still
allocate it’s full internal array, 8 or 16 times
the object size libstdc++ or libc++

 // Create a deque containing integers

 std::deque<int> d = {7, 5, 16, 8};

 // Add an integer to the beginning and end of

the deque

 d.push_front(13);

 d.push_back(25);

 // Iterate and print values of deque

 for(int n : d)

 std::cout << n << '\n';

 // prints: 13, 7, 5, 16, 8, 25

std::map

● Stores key/value pairs
○ All keys must be unique

● Insertion/Deletion/Search are all O(log(n))
● Generally implemented as a Red Black

Tree
● Can create a custom comparator for Key

sorting

template<

class Key,

class T,

class Compare = std::less<Key>,

class Allocator = std::allocator<std::pair<const

Key, T>>

> class map;

auto compare = [](std::string left, std::string

right)

{ return left.length() < right.length(); };

std::map<std::string, std::string,

decltype(compare)> map(compare);

std::unordered_map

● Stores key/value pairs
○ All keys must be unique

● Insertion/Deletion/Search are all O(1)
● Generally implemented as a Hash Table
● Can create a custom hashing and key

comparison algorithms

 // Create an unordered_map

 std::unordered_map<std::string, std::string> u = {

 {"GREEN","#00FF00"},

 {"BLUE","#0000FF"}

 };

 // Add new entry to the unordered_map

 u["RED"] = "#FF0000";

 // Modify an entry

 u["GREEN"] = "#NEWVAL";

 // Output values by key

 std::cout << "The HEX of color GREEN is:[" <<

u["GREEN"] << "]\n";

std::multimap/std::unordered_multimap

● Multimaps and unordered_multimaps are
very similar to the non multi versions,
except they do not require unique keys

● Complexities are the same as their
singular counterparts

Container
Adaptors

● std::stack
○ LIFO

● std::queue
○ FIFO

● std::priority_queue
○ FIFO with priority

template<

 class T,

 class Container = std::vector<T>,

 class Compare = std::less<typename

 Container::value_type>

> class priority_queue;

● These act as interfaces to
underlying containers

Data Structure
Selection

● Most commonly used data
structures in my experience:
vector & unordered_map

Binary Search Tree
vs Balanced Trees

Binary Search Trees

● Worst case search: O(n)

Balanced Trees

● Worst case search: O(log(n))
● Red-Black Tree
● AVL Tree

Examples

BST Example

BST Example

Heap Example

Heap Example Cont.

Hash Table Example

Hash Table Example cont.

Hash Table Example cont.

● https://github.com/gibsjose/cpp-cheat-sheet
● https://en.cppreference.com/w/

Useful Links

https://github.com/gibsjose/cpp-cheat-sheet
https://en.cppreference.com/w/

