Towers of Hanoi: Quick Overview

Based on: https://www.geeksforgeeks.org/c-program-for-tower-of-hanoi/
The "Towers of Hanoi" is a mathematical puzzle where one has three pegs and n disks and the goal is to move the entire stack of disks to another rod, obeying the following rules:

- Only one disk may be moved at a time
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack: a disk can only be moved if it is the uppermost disk on a stack.
- No disk may be placed on top of a smaller disk

Solution

Take an example for 2 disks :
Let peg 1 = 'A', peg 2 = 'B', peg 3 = 'C'.

Step 1: Shift first disk from 'A' to 'B'.
Step 2: Shift second disk from 'A' to 'C'.
Step 3: Shift first disk from ' B ' to ' C '.
The solution pattern is:
Shift ' n -1' disks from 'A' to 'B'.
Shift last disk from 'A' to 'C'.
Shift 'n-1' disks from 'B' to 'C'.

Image illustration for 3 disks:

Input: 2
Output:

- Disk 1 moved from A to B
- Disk 2 moved from A to C
- Disk 1 moved from B to C

Input: 3
Output:

- Disk 1 moved from A to C
- Disk 2 moved from A to B
- Disk 1 moved from C to B
- Disk 3 moved from A to C
- Disk 1 moved from B to A
- Disk 2 moved from B to C
- Disk 1 moved from A to C

Code Solution in C++

```
#include <stdio.h>
// C recursive function to solve tower of hanoi puzzle
void towerOfHanoi(int n, char from_rod, char to_rod, char aux_rod)
{
        if (n == 1)
    {
        printf("\n Move disk 1 from rod %c to rod %c", from_rod, to_rod);
        return;
    }
    towerOfHanoi(n-1, from_rod, aux_rod, to_rod);
    printf("\n Move disk %\overline{d from rod %c to rod %c", n, from_rod, to_rod);}
    towerOfHanoi(n-1, aux_rod, to_rod, from_rod);
}
int main()
{
        int n = 4; // Number of disks
        towerOfHanoi(n, 'A', 'C', 'B'); // A, B and C are names of rods
        return 0;
}
```


Output:

```
Move disk 1 from rod A to rod B
Move disk 2 from rod A to rod C
Move disk 1 from rod B to rod C
Move disk 3 from rod A to rod B
Move disk 1 from rod C to rod A
Move disk 2 from rod C to rod B
Move disk 1 from rod A to rod B
Move disk 4 from rod A to rod C
Move disk 1 from rod B to rod C
```

Move disk 2 from rod B to rod A Move disk 1 from rod C to $\operatorname{rod} A$ Move disk 3 from rod B to rod C Move disk 1 from rod A to rod B Move disk 2 from rod A to rod C Move disk 1 from rod B to rod C

