
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Using the ADT Stack

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

20 – 2 * 2 ^ 3

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

20 – 2 * 8

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

20 – 16

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

• Binary Operators

• Require two operands

• 4 + 5

• Unary Operators

• Single operand

• - 6

4

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

• Binary Operators

• Require two operands

• 4 + 5

• Unary Operators

• Single operand

• - 6

• Infix

• Common notation

• 5 + 6

• 5 + 6 * 7

• (5 + 6) * 7

• Prefix

• Functional languages

• + 5 6

• + * 7 6 5

• * + 5 6 7

• Postfix

• Reverse Polish Notation

• 5 6 +

• 5 6 7 * +

• 7 5 6 + *

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

• Binary Operators

• Require two operands

• 4 + 5

• Unary Operators

• Single operand

• - 6

• Infix

• Common notation

• 5 + 6

• 5 + 6 * 7

• (5 + 6) * 7

• Prefix

• Functional languages

• + 5 6

• + * 7 6 5

• * + 5 6 7

• Postfix

• Reverse Polish Notation

• 5 6 +

• 5 6 7 * +

• 7 5 6 + *

5 + 6

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

• Binary Operators

• Require two operands

• 4 + 5

• Unary Operators

• Single operand

• - 6

• Infix

• Common notation

• 5 + 6

• 5 + 6 * 7

• (5 + 6) * 7

• Prefix

• Functional languages

• + 5 6

• + * 7 6 5

• * + 5 6 7

• Postfix

• Reverse Polish Notation

• 5 6 +

• 5 6 7 * +

• 7 5 6 + *

+ 6

5

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

• Binary Operators

• Require two operands

• 4 + 5

• Unary Operators

• Single operand

• - 6

• Infix

• Common notation

• 5 + 6

• 5 + 6 * 7

• (5 + 6) * 7

• Prefix

• Functional languages

• + 5 6

• + * 7 6 5

• * + 5 6 7

• Postfix

• Reverse Polish Notation

• 5 6 +

• 5 6 7 * +

• 7 5 6 + *

6

5 +

operatorStack

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

• Binary Operators

• Require two operands

• 4 + 5

• Unary Operators

• Single operand

• - 6

• Infix

• Common notation

• 5 + 6

• 5 + 6 * 7

• (5 + 6) * 7

• Prefix

• Functional languages

• + 5 6

• + * 7 6 5

• * + 5 6 7

• Postfix

• Reverse Polish Notation

• 5 6 +

• 5 6 7 * +

• 7 5 6 + *

5 6 +

operatorStack

Algebraic Expression

• Operator Precedence

• Parenthesis ()

• Exponentiation ^ (not a C++ expression)

• Multiplication and Division * /

• Addition and Subtraction + -

• Binary Operators

• Require two operands

• 4 + 5

• Unary Operators

• Single operand

• - 6

• Infix

• Common notation

• 5 + 6

• 5 + 6 * 7

• (5 + 6) * 7

• Prefix

• Functional languages

• + 5 6

• + * 7 6 5

• * + 5 6 7

• Postfix

• Reverse Polish Notation

• 5 6 +

• 5 6 7 * +

• 7 5 6 + *

5 6 +

operatorStack

Evaluating Infix Expressions

• To evaluate an infix expression

• Convert the infix expression to postfix form

• Evaluate the postfix expression

• Use stacks to do so

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix 5 * (4 + 2) ^ 3

infix postfix

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

5 * (4 + 2) ^ 3

infix postfix

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postfix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStack is
empty or a (is reached

• Push operator onto the
operatorStack

* (4 + 2) ^ 3 5

infix postfix

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStack is
empty or a (is reached

• Push operator onto the
operatorStack

* (4 + 2) ^ 3 5

infix postfix

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStack is
empty or a (is reached

• Push operator onto the
operatorStack

* (4 + 2) ^ 3 5

infix postfix

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStack is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

(4 + 2) ^ 3 5

infix postfix

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

4 + 2) ^ 3 5

infix postfix

(

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

4 + 2) ^ 3 5

infix postfix

(

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

+ 2) ^ 3 5 4

infix postfix

(

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

+ 2) ^ 3 5 4

infix postfix

(

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

2) ^ 3 5 4

infix postfix

+

(

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

2) ^ 3 5 4

infix postfix

+

(

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

) ^ 3 5 4 2

infix postfix

+

(

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

) ^ 3 5 4 2

infix postfix

+

(

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

) ^ 3 5 4 2 +

infix postfix

(

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

^ 3 5 4 2 +

infix postfix

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

^ 3 5 4 2 +

infix postfix

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

3 5 4 2 +

infix postfix

^

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

3 5 4 2 +

infix postfix

^

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

5 4 2 + 3

infix postfix

^

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

5 4 2 + 3 ^

infix postfix

*

operatorStack

Evaluating Infix Expressions

• Converting Infix Expressions to Postfix

• Operand – append to the postfix
expression

• Operators * / + - etc

• If operatorStack is not empty

• Pop operators and append to
the postdix expression

• If their precedence >= that of
the operator in the infix
expression until operatorStac is
empty or a (is reached

• Push operator onto the
operatorStack

• (- push onto operatorStack

•) - pop operators from
operatorStack and append to
postfix expression until (is popped

5 4 2 + 3 ^ *

infix postfix

operatorStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

5 4 2 + 3 ^ *

postfix

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

5 4 2 + 3 ^ *

postfix

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

4 2 + 3 ^ *

postfix

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

4 2 + 3 ^ *

postfix

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

2 + 3 ^ *

postfix

4

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

2 + 3 ^ *

postfix

4

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

+ 3 ^ *

postfix

2

4

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

+ 3 ^ *

postfix

2

4

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

3 ^ *

postfix

5

operandStack

4 + 2

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

3 ^ *

postfix

6

5

operandStack

6

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

3 ^ *

postfix

6

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

^ *

postfix

3

6

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

^ *

postfix

3

6

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

^ *

postfix

5

operandStack

6^3

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

^ *

postfix

5

operandStack

216

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

*

postfix

216

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

*

postfix

216

5

operandStack

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

*

postfix

operandStack

5*216

Evaluating Postfix Expressions

• Scan characters in the postfix expression

• When an operand is entered

• push it onto the operandStack

• When an operator is entered

• Apply it to the top two operands of
the operandStack

• pop the operands from the
operandStack

• push the result of the operation onto
the operandStack

postfix

operandStack

1080

Evaluating Infix Expressions

• To evaluate an infix
expression

• Convert the infix
expression to postfix form

• Evaluate the postfix
expression

Algorithm convertToPostfix(infix)

// Converts an infix expression to an equivalent postfix expression

infixExpression = infix expression to process

operatorStack = a new empty stack

postfixExpression = a new empty string

Evaluating Infix Expressions

• To evaluate an infix
expression

• Convert the infix
expression to postfix form

• Evaluate the postfix
expression

Algorithm convertToPostfix(infix)

// Converts an infix expression to an equivalent postfix expression

infixExpression = infix expression to process

operatorStack = a new empty stack

postfixExpression = a new empty string

while (infixQueue has characters left to parse)

{

nextCharacter = next non-blank infixExpression character

process(nextCharacter)

}

while (!operatorStack.isEmpty())

{

topOperator = operatorStack.pop()

append topOperator to postfixExpression

}

return postfixExpression

Evaluating Infix Expressions

• To evaluate an infix
expression

• Convert the infix
expression to postfix form

• Evaluate the postfix
expression

// Process nextCharacter algorithm

switch (nextCharacter)

{

case variable:

append nextCharacter to postfixExpression

case ‘^’:

operatorStack.push(nextCharacter)

case ‘(’:

operatorStack.push(nextCharacter)

Evaluating Infix Expressions

• To evaluate an infix
expression

• Convert the infix
expression to postfix form

• Evaluate the postfix
expression

// Process nextCharacter algorithm

switch (nextCharacter)

{

case variable:

append nextCharacter to postfixExpression

case ‘^’:

operatorStack.push(nextCharacter)

case ‘(’:

operatorStack.push(nextCharacter)

case ‘)’:

topOperator = operatorStack.pop()

while(topOperator != ‘(’)

append topOperator to postfixExpression

topOperator = operatorStack.pop()

default:

break;

}

Evaluating Infix Expressions

• To evaluate an infix
expression

• Convert the infix
expression to postfix form

• Evaluate the postfix
expression

// Process nextCharacter algorithm

switch (nextCharacter)

{

case variable:

append nextCharacter to postfixExpression

case ‘^’:

operatorStack.push(nextCharacter)

case ‘(’:

operatorStack.push(nextCharacter)

case ‘)’:

topOperator = operatorStack.pop()

while(topOperator != ‘(’)

append topOperator to postfixExpression

topOperator = operatorStack.pop()

case ‘+’: case ‘-’: case ‘*’: case ‘/’:

while(!operatorStack.isEmpty() and precedence of

nextCharacter <= precedence of operatorStack.peek())

topOperator = operatorStack.pop()

append topOperator to postfixExpression

topOperator = operatorStack.pop()

peratorStack.push(nextCharacter)

default:

break;

}

Evaluating Infix Expressions

• To evaluate an infix
expression

• Convert the infix
expression to postfix form

• Evaluate the postfix
expression

Algorithm convertToPostfix(infix)

// Converts an infix expression to an equivalent postfix expression

infixExpression = infix expression to process

operatorStack = a new empty stack

postfixExpression = a new empty string

while (infixQueue has characters left to parse)

{

nextCharacter = next non-blank infixExpression character

process(nextCharacter)

}

while (!operatorStack.isEmpty())

{

topOperator = operatorStack.pop()

append topOperator to postfixExpression

}

return postfixExpression

Evaluating Infix Expressions

• To evaluate an infix
expression

• Convert the infix
expression to postfix form

• Evaluate the postfix
expression

Algorithm evaluatePostfix(postfix)

// evaluate a postfix expression

valueStack = a new empty stack

while(postfixExpression has characters left to process)

{

nextCharacter = next non blank character of postfixExpression

switch (nextCharacter)

{

case variable:

valueStack.push(value of var nextCharacter)

break

case ‘+’: case ‘-’: case ‘*’; case ‘/’: case ‘*’:

operandTwo = valueStack.peek()

valueStack.pop()

operandOne = valueStack.peek()

valueStack.pop()

result = apply operation in nextCharacter to its
operands operandOne and operandTwo

break

default: break

} // end switch

} // end while

Evaluating Infix Expressions

• To evaluate an infix
expression

• Convert the infix
expression to postfix form

• Evaluate the postfix
expression

Algorithm evaluatePostfix(postfix)

// evaluate a postfix expression

valueStack = a new empty stack

while(postfixExpression has characters left to process)

{

nextCharacter = next non blank character of postfixExpression

switch (nextCharacter)

{

case variable:

valueStack.push(value of var nextCharacter)

break

case ‘+’: case ‘-’: case ‘*’; case ‘/’: case ‘*’:

operandTwo = valueStack.peek()

valueStack.pop()

operandOne = valueStack.peek()

valueStack.pop()

result = apply operation in nextCharacter to its
operands operandOne and operandTwo

break

default: break

} // end switch

} // end while

return valueStack.peek()

Thank you

