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postfixExpression = a new empty string
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operatorStack.push(nextCharacter)

case ‘(’:
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topOperator = operatorStack.pop()

append topOperator to postfixExpression

}

return postfixExpression



Evaluating Infix Expressions

• To evaluate an infix 
expression

• Convert the infix 
expression to postfix form

• Evaluate the postfix 
expression

Algorithm evaluatePostfix(postfix)

// evaluate a postfix expression

valueStack = a new empty stack

while(postfixExpression has characters left to process)

{

nextCharacter = next non blank character of postfixExpression

switch (nextCharacter)

{

case variable:

valueStack.push(value of var nextCharacter)

break

case ‘+’: case ‘-’: case ‘*’; case ‘/’: case ‘*’:

operandTwo = valueStack.peek()

valueStack.pop()

operandOne = valueStack.peek()

valueStack.pop()

result = apply operation in nextCharacter to its 
operands operandOne and operandTwo

break

default: break

} // end switch

} // end while 



Evaluating Infix Expressions

• To evaluate an infix 
expression

• Convert the infix 
expression to postfix form

• Evaluate the postfix 
expression

Algorithm evaluatePostfix(postfix)

// evaluate a postfix expression

valueStack = a new empty stack

while(postfixExpression has characters left to process)

{

nextCharacter = next non blank character of postfixExpression

switch (nextCharacter)

{

case variable:

valueStack.push(value of var nextCharacter)

break

case ‘+’: case ‘-’: case ‘*’; case ‘/’: case ‘*’:

operandTwo = valueStack.peek()

valueStack.pop()

operandOne = valueStack.peek()

valueStack.pop()

result = apply operation in nextCharacter to its 
operands operandOne and operandTwo

break

default: break

} // end switch

} // end while 

return valueStack.peek()



Thank you


