CS302 - Data Structures using C++

Topic: Algorithm Efficiency

Kostas Alexis

What is a Good Solution?

- A program incurs a real and tangible cost
- Computing time
- Memory required
- Difficulties encountered by users
- Consequences of incorrect actions by the program

What is a Good Solution?

- A program incurs a real and tangible cost
- Computing time
- Memory required
- Difficulties encountered by users
- Consequences of incorrect actions by the program
- A solution is good if ...
- The total cost incurs ...
- Overall all phases of its life ... is minimal

What is a Good Solution?

- Important elements of the solution
- Good structure
- Good documentation
- Efficiency

What is a Good Solution?

- Important elements of the solution
- Good structure
- Good documentation
- Efficiency
- Be concerned with efficiency when
- Developing underlying algorithm
- Choice of objects and design of interaction between these objects

Measuring Efficiency of Algorithms

- Important because
- Choice of algorithm has significant impact
- Examples
- Responsive word processors
- Internet search engines
- Real-time guidance systems
- Autonomous cars

Measuring Efficiency of Algorithms

- Analysis of algorithms
- The area of computer science that provides tools for contrasting efficiency of different algorithms
- Comparison of algorithms should focus on significant differences in efficiency
- We consider comparisons of algorithms, not programs

Measuring Efficiency of Algorithms

- Difficulties with comparing programs (instead of algorithms)
- How are the algorithms coded
- What computer will be used
- What data should the program use
- Algorithms analysis should be independent of
- Specific implementations, computers, and data

Measuring Efficiency of Algorithms

- Even a simple program can be "inefficient"
- What is an efficient algorithm?
- Algorithms take time to execute
- Algorithms need storage for data and variables
- Complexity
- Time and storage requirements of an algorithm
- Analysis of algorithms
- Measuring of the complexity of an algorithm
- Types of complexity
- Time complexity
- Speed (number of operations)
- Space complexity
- Storage (memory or disk)
- Inverse relationship
- Faster algorithms can require more space
- Reducing storage can increase execution time

Measuring Complexity

- Measuring Complexity
- Express complexity in problem size
- Number of items processed by algorithm
- Usually represented by \mathbf{n}
- Cannot compute actual time for an algorithm
- Compute growth-rate function
- Simple function that is directly proportional to the algorithms time requirement
- Gives common basis for comparison

Measuring Complexity

- Measuring Complexity
- Express complexity in problem size
- Number of items processed by algorithm
- Usually represented by \mathbf{n}
- Cannot compute actual time for an algorithm
- Compute growth-rate function
- Simple function that is directly proportional to the algorithms time requirement
- Gives common basis for comparison
- Comparing algorithms should be independent of
- Specific Implementation
- How are the algorithms coded
- Computer
- What computer is used
- Data
- The data should the program uses

Growth-Rate Functions

- Find the sum of the first \mathbf{n} positive integers

[^0]
Growth-Rate Functions

- Find the sum of the first \mathbf{n} positive integers

$$
\begin{gathered}
1+2+3+\ldots+n-1+n \\
\text { for an integer } n>0
\end{gathered}
$$

```
    Algorithm A
sum = 0
for i = 1 to n
    sum = sum + I
```


Growth-Rate Functions

- Find the sum of the first \mathbf{n} positive integers

$$
\begin{aligned}
& 1+2+3+\ldots+n-1+n \\
& \text { for an integer } n>0
\end{aligned}
$$

| Algorithm A |
| :---: | :---: |
| sum $=0$ |
| for $i=1$ to n |
| sum $=$ sum +1 |$|$| sum $=0$ |
| :---: |
| for $i=1$ to n |
| for $j=1$ to i |
| sum $=$ sum +1 |

Growth-Rate Functions

- Find the sum of the first \mathbf{n} positive integers

$$
\begin{gathered}
1+2+3+\ldots+n-1+n \\
\text { for an integer } n>0
\end{gathered}
$$

Algorithm A	Algorithm B	Algorithm C
$\begin{aligned} & \text { sum }=0 \\ & \text { for } i=1 \text { to } n \\ & \text { sum }=\text { sum }+I \end{aligned}$	```sum = 0 for i = 1 to n for j = 1 to i sum = sum + 1```	sum $=\mathrm{n}^{*}(\mathrm{n}+1) / 2$

Growth-Rate Functions

- Find the sum of the first \mathbf{n} positive integers

$$
\begin{gathered}
1+2+3+\ldots+n-1+n \\
\text { for an integer } n>0
\end{gathered}
$$

Algorithm A	Algorithm B	Algorithm C
$\begin{aligned} & \text { sum }=0 \\ & \text { for } i=1 \text { to } n \\ & \text { sum }=\text { sum }+I \end{aligned}$	```sum = 0 for i = 1 to n for j = 1 to i sum = sum + 1```	sum $=\mathrm{n}^{*}(\mathrm{n}+1) / 2$

Algorithm B takes noticeably longer

Growth-Rate Functions

- Find the sum of the first \mathbf{n} positive integers

$$
\begin{aligned}
& 1+2+3+\ldots+n-1+n \\
& \text { for an integer } n>0
\end{aligned}
$$

- Finding the growth-rate function
- Count basic operations

Algorithm A	Algorithm B	Algorithm C
$\begin{aligned} & \text { sum }=0 \\ & \text { for } i=1 \text { to } n \\ & \text { sum }=\text { sum }+I \end{aligned}$	```sum = 0 for i = 1 to n for j = 1 to i sum = sum + 1```	sum $=\mathrm{n}^{*}(\mathrm{n}+1) / 2$

Algorithm B takes noticeably longer

Growth-Rate Functions

- Find the sum of the first \mathbf{n} positive integers

```
1+2+3+\ldots+n-1 +n
    for an integer n > 0
```

- Finding the growth-rate function
- Count basic operations

Algorithm A	Algorithm B	Algorithm C
$\begin{aligned} & \text { sum }=0 \\ & \text { for } i=1 \text { to } n \\ & \text { sum }=\text { sum }+I \end{aligned}$	```sum = 0 for i = 1 to n for j = 1 to i sum = sum + 1```	sum $=\mathrm{n} *(\mathrm{n}+1) / 2$

Algorithm B takes noticeably longer
Count "action" statements

- Statements directly related to accomplishing goal - Additions, Multiplications, Comparisons, Moves
- Ignore "bookkeeping" statements

Growth-Rate Functions

- Find the sum of the first \mathbf{n} positive integers

```
1 + 2 + 3 + ... + n-1 + n
    for an integer n > 0
```

- Finding the growth-rate function
- Count basic operations

	Algorithm A	Algorithm B	Algorithm C
	```sum = 0 for i = 1 to n sum = sum + I```	```sum = 0 for i = 1 to n for j = 1 to i sum = sum + 1```	sum $=n^{*}(\mathrm{n}+1) / 2$
Additions	n	$n(\mathrm{n}+1) / 2$	1
Multiplications	0	0	1
Divisions	0	0	1
Total Operations	n	$\left(n^{2}+n\right) / 2$	3

## Growth-Rate Functions



## Growth-Rate Functions


$\mathbb{N}$

## Growth-Rate Functions



## Growth-Rate Functions

- Number of operations required as a function of $n$

n	$\log (\operatorname{logn})$	$\operatorname{logn}$	$\log _{2} \mathrm{n}$	n	nlogn	$\mathrm{n}^{2}$	$\mathrm{n}^{3}$	$2^{\text {n }}$	n !
10	2	3	11	10	33	$10^{3}$	$10^{2}$	1024	3528800
$10^{2}$	3	7	44	100	664	$10^{6}$	$10^{4}$	$\begin{gathered} 1.2677 * 10_{3} \\ 0 \end{gathered}$	$9.33 * 10^{157}$
$10^{3}$	3	10	99	1000	9966	$10^{9}$	$10^{6}$	$10.71 * 10^{300}$	*
$10^{4}$	4	13	177	10000	132877	$10^{12}$	$10^{8}$	*	*
$10^{5}$	4	17	276	1000000	1600964	$10^{16}$	$10^{10}$	*	*
$10^{6}$	4	20	397	1000000	19931569	$10^{18}$	$10^{12}$	*	*

## Growth-Rate Functions

- Number of operations required as a function of $n$

n	$\log (\operatorname{logn})$	logn	$\log _{2} \mathrm{n}$	n	nlogn	$\mathrm{n}^{2}$	$\mathrm{n}^{3}$	$2^{\text {n }}$	n !
10	2	3	11	10	33	$10^{3}$	$10^{2}$	1024	3528800
$10^{2}$	3	7	44	100	664	$10^{6}$	$10^{4}$	$\begin{gathered} 1.2677 * 10_{3} \\ 0 \end{gathered}$	$9.33 * 10^{157}$
$10^{3}$	3	10	99	1000	9966	$10^{9}$	$10^{6}$	$10.71 * 10^{300}$	*
$10^{4}$	4	13	177	10000	132877	$10^{12}$	$10^{8}$	*	*
$10^{5}$	4	17	276	1000000	1600964	$10^{16}$	$10^{10}$	*	*
$10^{6}$	4	20	397	1000000	19931569	$10^{18}$	$10^{12}$	*	*

## Growth-Rate Functions

- Number of operations required as a function of $n$




## Growth-Rate Functions

- Representing an Algorithm's complexity
- Big O notation
- Order of at most $n$
- Order of at most $n^{2}$
- Order of at most 1

Algorithm A	Algorithm B	Algorithm C
```sum = 0 for i = 1 to n sum = sum + I```	```sum = 0 for i = 1 to n for j = 1 to i sum = sum + 1```	sum $=\mathrm{n}^{*}(\mathrm{n}+1) / 2$
n	$\left(\mathrm{n}^{2}+\mathrm{n}\right) / 2$	3
$\mathrm{O}(\mathrm{n})$	$O\left(n^{2}\right)$	O(1)

Growth-Rate Functions

- Effect of doubling the problem size on an algorithm's time requirement

Growth-Rate Function for Size \mathbf{n} Problems	Growth-Rate Function for Size 2n Problems	Effect on Time Requirement
1	1	None
logn	$1+\operatorname{logn}$	Negligible
n	$2 n$	Doubles
nlong	$2 n \operatorname{logn}+2 n$	Doubles then add $2 n$
n^{2}	$(2 n)^{2}$	Quadruples
n^{3}	$(2 n)^{3}$	Multiplies by 8
$2 n$	$2^{2 n}$	Squares

Analysis and Big O Notation

- Algorithm A is said to be order $f(n)$
- Denoted as O(f(n))
- Function $f(n)$, called algorithm's growth rate function
- Notation with capital O denotes order
- Algorithm A of order denoted $O(f(n))$
- Constants k and n_{0} exist such that
- A requires no more than $k f(n)$ time units
- For problem of size $n \geq n_{0}$

Analysis and Big O Notation

- Order of growth of some common functions

$$
\left.O(1)<O\left(\log _{2} n\right)<O(n)<O n \log _{2} n\right)<O\left(n^{2}\right)<O\left(n^{3}\right)<O\left(2^{n}\right)
$$

Analysis and Big O Notation

- Worst-case analysis
- Worst case analysis usually considered
- Easier to calculate, thus more common
- Average-case analysis
- More difficult to perform
- Must determine relative probabilities of encountering problems of a given size

Keeping your Perspective

- ADT used makes a difference
- Array-based getentry is O(1)
- Link-based getEntry is O(n)
- Choosing implementation of ADT
- Consider how frequently certain operations will occur
- Seldom used but critical operations must also be efficient

Analysis and Big O Notation

- If problem size is always small
- Possible to ignore algorithm's efficiency
- Weight trade-offs between
- Algorithm's time and memory requirements
- Compare algorithms for style and efficiency

Note: Efficiency of Searching Algorithms

- Sequential search
- Worst case: O(n)
- Average case: O(n)
- Best case: O(1)
- Binary search
- Worst case: O(log $\left.{ }_{2} n\right)$
- At the same time, maintaining array in sorted order requires overhead cost which can be substantial

Thank you

[^0]: $1+2+3+\ldots+n-1+n$ for an integer $n>0$

