CS302 - Data Structures using C++

Topic: Formal Definitions

Kostas Alexis

- Let T, f be two monotone increasing functions that maps from N to \mathbb{R}^+
- Asymptotic Upper Bounds
 - We say T(n) = O(f(n)) if there exists constants c > 0 and $n_0 \ge 0$, such that for all $n \ge n_0$, we have $T(n) \le cf(n)$

- Let T, f be two monotone increasing functions that maps from N to \mathbb{R}^+
- Asymptotic Upper Bounds
 - We say T(n) = O(f(n)) if there exists constants c > 0 and $n_0 \ge 0$, such that for all $n \ge n_0$, we have $T(n) \le cf(n)$

• Examples

- $T(n) = 100n + 100 \Rightarrow T(n) = O(n)$
- $T(n) = pn^2 + qn + r$ for constants $p, q, r, > 0 \Rightarrow T(n) = O(n^2)$

- Let T, f be two monotone increasing functions that maps from N to \mathbb{R}^+
- Asymptotic Upper Bounds
 - We say T(n) = O(f(n)) if there exists constants c > 0 and $n_0 \ge 0$, such that for all $n \ge n_0$, we have $T(n) \le cf(n)$

• Examples

- $T(n) = 100n + 100 \Rightarrow T(n) = O(n)$
 - Set c = 1001 and $n_0 = 100$
- $T(n) = pn^2 + qn + r$ for constants $p, q, r, > 0 \Rightarrow T(n) = O(n^2)$

- Let T, f be two monotone increasing functions that maps from N to \mathbb{R}^+
- Asymptotic Upper Bounds
 - We say T(n) = O(f(n)) if there exists constants c > 0 and $n_0 \ge 0$, such that for all $n \ge n_0$, we have $T(n) \le cf(n)$

• Examples

- $T(n) = 100n + 100 \Rightarrow T(n) = O(n)$
 - Set c = 1001 and $n_0 = 100$
- $T(n) = pn^2 + qn + r$ for constants $p, q, r, > 0 \Rightarrow T(n) = O(n^2)$
 - Set c = p + q + r and $n_0 = 1$
 - Also correct to say $T(n) = O(n^3)$

Remarks

- Equals sign. O(f(n)) is a set of functions, but computer scientists often write T(n) = O(f(n)) instead of $T(n) \in O(f(n))$
 - Consider $f(n) = 5n^3$ and $g(n) = 3n^2$, we write $f(n) = O(n^3) = g(n)$, but it does not mean that f(n) = g(n)

Remarks

- Equals sign. O(f(n)) is a set of functions, but computer scientists often write T(n) = O(f(n)) instead of $T(n) \in O(f(n))$
 - Consider $f(n) = 5n^3$ and $g(n) = 3n^2$, we write $f(n) = O(n^3) = g(n)$, but it does not mean that f(n) = g(n)
- **Domain.** The domain of f(n) is typically the natural numbers $\{0,1,2,...\}$
 - Sometimes we restrict to a subset of the natural numbers. Other times we extend to the reals.

Remarks

- Equals sign. O(f(n)) is a set of functions, but computer scientists often write T(n) = O(f(n)) instead of $T(n) \in O(f(n))$
 - Consider $f(n) = 5n^3$ and $g(n) = 3n^2$, we write $f(n) = O(n^3) = g(n)$, but it does not mean that f(n) = g(n)
- **Domain.** The domain of f(n) is typically the natural numbers $\{0,1,2,...\}$
 - Sometimes we restrict to a subset of the natural numbers. Other times we extend to the reals.
- Nonnegative functions. When using big-O notation, we assume the functions involved are (asymptotically) nonnegative.

- Let T, f be two monotone increasing functions that maps from N to \mathbb{R}^+
- Asymptotic Lower Bounds
 - We say $T(n) = \Omega(f(n))$ if there exists constants $\epsilon > 0$ and $n_0 \ge 0$, such that for all $n \ge n_0$, we have $T(n) \ge \epsilon f(n)$
- Examples
 - $T(n) = pn^2 + qn + r$ for constants $p, q, r, > 0 \Rightarrow T(n) = \Omega(n^2)$
 - Set $\epsilon = p$ and $n_0 = 1$
 - Also correct to say $T(n) = \Omega(n)$
- Meaningful Statement. Any compare-based sorting algorithm requires $\Omega(nlogn)$ compares in the worst case.
- **Meaningless Statement.** Any compare-based sorting algorithm requires O(nlogn) compares in the worst case

- Let T, f be two monotone increasing functions that maps from N to \mathbb{R}^+
- Asymptotic Tight Bounds
 - We say $T(n) = \Theta(f(n))$ if there exists constants $c_1, c_2 > 0$ and $n_0 \ge 0$, such that for all $n \ge n_0$, we have $c_1 \le T(n) \le c_2$
- Alternative definition
 - $T(n) = \Theta(f(n))$ if T(n) is both O(f(n)) and also $\Omega(f(n))$
- Examples
 - $T(n) = pn^2 + qn + r$ for constants $p, q, r > 0 \Rightarrow T(n) = \Theta(n^2)$
 - Set $c_1 = p, c_2 = p + q + r$ and $n_0 = 1$
 - T(n) is neither $\Theta(n)$ nor $\Theta(n^3)$

Properties of Asymptotic Growth Rates

- If f = O(g) and g = O(h), then f = O(h)
- If $f = \Omega(g)$ and $g = \Omega(h)$, then $f = \Omega(h)$
- If $f = \Theta(g)$ and $g = \Theta(h)$, then $f = \Theta(h)$
- If $f = O(\eta)$ and g = O(h), then f + g = O(h)
- If g = O(f), then $f + g = \Theta(\varphi)$
- If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$, then $f = \Theta(g)$

Some Common Functions

- **Polynomials.** Let f be a polynomial of degree d, in which the coefficient a_d is positive. Then $f = O(n^d)$.
 - Asymptotic rate of growth is determined by their "higher-order term".
 - Polynomial-Time Algorithm: A polynomial-time algorithm is one with running time $O(n^d)$ for some constant d.
- Logarithms. For every a, b > 1 and every $\chi > 0$, we have $log_a n = \Theta(log_b n) = O(n^{\chi})$
 - No need to specify base (assuming it is a constant).
 - Logarithms are always better than polynomials.
- **Exponentials.** For every r > 1 and every d > 0, we have $n^d = O(r^n)$.
 - Polynomials are always better than exponentials.

More Notations

- Asymptotic Smaller
 - We say T(n) = o(f(n)) if $\lim_{n \to \infty} \frac{T(n)}{f(n)} = 0$
- Asymptotic Larger
 - We say $T(n) = \omega(f(n))$ if $\lim_{n \to \infty} \frac{f(n)}{T(n)} = 0$

O, Ω , and Θ with multiple variables

Asymptotic Upper Bounds

- We say T(m,n) = O(f(m,n)) if there exists constants c > 0 and $m_0 \ge 0$ and $n_0 \ge 0$, such that for all $m \ge m_0$ and $n \ge n_0$, we have $T(m,n) \le cf(m,n)$.
- Similar definitions hold for Ω and Θ

Examples

- $T(m,n) = 32mn^2 + 17mn + 32n^3$
 - T(m,n) is both $O(mn^2 + n^3)$ and $O(mn^3)$
 - T(m,n) is neither $O(n^3)$ nor $O(mn^2)$

Thank you

