
CS302 - Data Structures
using C++

Kostas Alexis

Topic: Formal Definitions



O, Ω, and Θ

• Let 𝑇, 𝑓 be two monotone increasing functions that maps from ℕ to ℝ+

• Asymptotic Upper Bounds

• We say 𝑇 𝑛 = 𝑂 𝑓 𝑛 if there exists constants 𝑐 > 0 and 𝑛0 ≥ 0, such that for all 𝑛 ≥ 𝑛0, we have 
𝑇(𝑛) ≤ 𝑐𝑓(𝑛)



O, Ω, and Θ

• Let 𝑇, 𝑓 be two monotone increasing functions that maps from ℕ to ℝ+

• Asymptotic Upper Bounds

• We say 𝑇 𝑛 = 𝑂 𝑓 𝑛 if there exists constants 𝑐 > 0 and 𝑛0 ≥ 0, such that for all 𝑛 ≥ 𝑛0, we have 
𝑇(𝑛) ≤ 𝑐𝑓(𝑛)

• Examples

• 𝑇 𝑛 = 100𝑛 + 100 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

• 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑟 for constants 𝑝, 𝑞, 𝑟, > 0 ⇒ 𝑇 𝑛 = 𝑂(𝑛2)



O, Ω, and Θ

• Let 𝑇, 𝑓 be two monotone increasing functions that maps from ℕ to ℝ+

• Asymptotic Upper Bounds

• We say 𝑇 𝑛 = 𝑂 𝑓 𝑛 if there exists constants 𝑐 > 0 and 𝑛0 ≥ 0, such that for all 𝑛 ≥ 𝑛0, we have 
𝑇(𝑛) ≤ 𝑐𝑓(𝑛)

• Examples

• 𝑇 𝑛 = 100𝑛 + 100 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

• Set 𝑐 = 1001 and 𝑛0 = 100

• 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑟 for constants 𝑝, 𝑞, 𝑟, > 0 ⇒ 𝑇 𝑛 = 𝑂(𝑛2)



O, Ω, and Θ

• Let 𝑇, 𝑓 be two monotone increasing functions that maps from ℕ to ℝ+

• Asymptotic Upper Bounds

• We say 𝑇 𝑛 = 𝑂 𝑓 𝑛 if there exists constants 𝑐 > 0 and 𝑛0 ≥ 0, such that for all 𝑛 ≥ 𝑛0, we have 
𝑇(𝑛) ≤ 𝑐𝑓(𝑛)

• Examples

• 𝑇 𝑛 = 100𝑛 + 100 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

• Set 𝑐 = 1001 and 𝑛0 = 100

• 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑟 for constants 𝑝, 𝑞, 𝑟, > 0 ⇒ 𝑇 𝑛 = 𝑂(𝑛2)

• Set 𝑐 = 𝑝 + 𝑞 + 𝑟 and 𝑛0 = 1

• Also correct to say 𝑇 𝑛 = 𝑂(𝑛3)



Remarks

• Equals sign. 𝑂(𝑓 𝑛 ) is a set of functions, but computer scientists often write 𝑇 𝑛 =
𝑂 𝑓 𝑛 instead of 𝑇 𝑛 𝜖 𝑂(𝑓 𝑛 )

• Consider 𝑓 𝑛 = 5𝑛3 and 𝑔 𝑛 = 3𝑛2, we write 𝑓 𝑛 = 𝑂 𝑛3 = 𝑔(𝑛), but it does not mean that 𝑓 𝑛 =
𝑔(𝑛)



Remarks

• Equals sign. 𝑂(𝑓 𝑛 ) is a set of functions, but computer scientists often write 𝑇 𝑛 =
𝑂 𝑓 𝑛 instead of 𝑇 𝑛 𝜖 𝑂(𝑓 𝑛 )

• Consider 𝑓 𝑛 = 5𝑛3 and 𝑔 𝑛 = 3𝑛2, we write 𝑓 𝑛 = 𝑂 𝑛3 = 𝑔(𝑛), but it does not mean that 𝑓 𝑛 =
𝑔(𝑛)

• Domain. The domain of 𝑓(𝑛) is typically the natural numbers {0,1,2, … }

• Sometimes we restrict to a subset of the natural numbers. Other times we extend to the reals. 



Remarks

• Equals sign. 𝑂(𝑓 𝑛 ) is a set of functions, but computer scientists often write 𝑇 𝑛 =
𝑂 𝑓 𝑛 instead of 𝑇 𝑛 𝜖 𝑂(𝑓 𝑛 )

• Consider 𝑓 𝑛 = 5𝑛3 and 𝑔 𝑛 = 3𝑛2, we write 𝑓 𝑛 = 𝑂 𝑛3 = 𝑔(𝑛), but it does not mean that 𝑓 𝑛 =
𝑔(𝑛)

• Domain. The domain of 𝑓(𝑛) is typically the natural numbers {0,1,2, … }

• Sometimes we restrict to a subset of the natural numbers. Other times we extend to the reals. 

• Nonnegative functions. When using big-O notation, we assume the functions 
involved are (asymptotically) nonnegative. 



O, Ω, and Θ

• Let 𝑇, 𝑓 be two monotone increasing functions that maps from ℕ to ℝ+

• Asymptotic Lower Bounds

• We say 𝑇 𝑛 = Ω 𝑓 𝑛 if there exists constants ϵ > 0 and 𝑛0 ≥ 0, such that for all 𝑛 ≥ 𝑛0, we have 
𝑇(𝑛) ≥ ϵ𝑓(𝑛)

• Examples

• 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑟 for constants 𝑝, 𝑞, 𝑟, > 0 ⇒ 𝑇 𝑛 = Ω(𝑛2)

• Set ϵ = 𝑝 and 𝑛0 = 1

• Also correct to say 𝑇 𝑛 = Ω(𝑛)

• Meaningful Statement. Any compare-based sorting algorithm requires Ω(nlogn)
compares in the worst case.

• Meaningless Statement. Any compare-based sorting algorithm requires 𝑂(𝑛𝑙𝑜𝑔𝑛)
compares in the worst case



O, Ω, and Θ

• Let 𝑇, 𝑓 be two monotone increasing functions that maps from ℕ to ℝ+

• Asymptotic Tight Bounds

• We say 𝑇 𝑛 = Θ 𝑓 𝑛 if there exists constants 𝑐1, 𝑐2 > 0 and 𝑛0 ≥ 0, such that for all 𝑛 ≥ 𝑛0, we 
have 𝑐1 ≤ 𝑇(𝑛) ≤ 𝑐2

• Alternative definition

• 𝑇 𝑛 = Θ(f n ) if 𝑇 𝑛 is both 𝑂(𝑓 𝑛 ) and also Ω(f n )

• Examples

• 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑟 for constants 𝑝, 𝑞, 𝑟 > 0 ⟹ 𝑇 𝑛 = Θ(𝑛2)

• Set 𝑐1 = 𝑝, 𝑐2 = 𝑝 + 𝑞 + 𝑟 and 𝑛0 = 1

• 𝑇(𝑛) is neither Θ(n) nor Θ(𝑛3)



Properties of Asymptotic Growth Rates

• If 𝑓 = 𝑂(𝑔) and 𝑔 = 𝑂 ℎ , then 𝑓 = 𝑂(ℎ)

• If 𝑓 = Ω(𝑔) and 𝑔 = Ω ℎ , then 𝑓 = Ω(ℎ)

• If 𝑓 = Θ(𝑔) and 𝑔 = Θ ℎ , then 𝑓 = Θ(ℎ)

• If 𝑓 = 𝑂(𝜂) and 𝑔 = 𝑂 ℎ , then 𝑓 + 𝑔 = 𝑂(ℎ)

• If g = 𝑂(𝑓), then 𝑓 + 𝑔 = Θ(𝜑)

• If lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 𝑐 > 0, then 𝑓 = Θ(g)



Some Common Functions

• Polynomials. Let 𝑓 be a polynomial of degree 𝑑, in which the coefficient 𝑎𝑑 is 
positive. Then 𝑓 = 𝑂(𝑛𝑑).

• Asymptotic rate of growth is determined by their “higher-order term”.

• Polynomial-Time Algorithm: A polynomial-time algorithm is one with running time 𝑂 𝑛𝑑 for some 
constant 𝑑.

• Logarithms. For every 𝑎, 𝑏 > 1 and every 𝜒 > 0, we have 𝑙𝑜𝑔𝑎𝑛 = Θ 𝑙𝑜𝑔𝑏𝑛 = 𝑂(𝑛𝜒)

• No need to specify base (assuming it is a constant).

• Logarithms are always better than polynomials.

• Exponentials. For every 𝑟 > 1 and every 𝑑 > 0, we have 𝑛𝑑 = 𝑂 𝑟𝑛 .

• Polynomials are always better than exponentials. 



More Notations

• Asymptotic Smaller

• We say 𝑇 𝑛 = 𝑜 𝑓 𝑛 if lim
𝑛→∞

𝑇(𝑛)

𝑓(𝑛)
= 0

• Asymptotic Larger

• We say 𝑇 𝑛 = 𝜔 𝑓 𝑛 if lim
𝑛→∞

𝑓(𝑛)

𝑇(𝑛)
= 0



O, Ω, and Θ with multiple variables

• Asymptotic Upper Bounds

• We say 𝑇 𝑚, 𝑛 = O 𝑓 𝑚, 𝑛 if there exists constants c > 0 and 𝑚0 ≥ 0 and 𝑛0 ≥ 0, such that for all 
m ≥ 𝑚0 and 𝑛 ≥ 𝑛0, we have 𝑇(𝑚, 𝑛) ≤ 𝑐𝑓(𝑚, 𝑛).

• Similar definitions hold for Ω and Θ

• Examples

• 𝑇 𝑚, 𝑛 = 32𝑚𝑛2 + 17𝑚𝑛 + 32𝑛3

• 𝑇(𝑚, 𝑛) is both 𝑂(𝑚𝑛2 + 𝑛3) and 𝑂(𝑚𝑛3)

• 𝑇(𝑚, 𝑛) is neither 𝑂(𝑛3) nor 𝑂(𝑚𝑛2)



Thank you


