CS302 - Data Structures using C++

Topic: Formal Definitions
Kostas Alexis

O, Ω, and Θ

- Let T, f be two monotone increasing functions that maps from \mathbb{N} to \mathbb{R}^{+}
- Asymptotic Upper Bounds
- We say $T(n)=O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$, such that for all $n \geq n_{0}$, we have $T(n) \leq c f(n)$

O, Ω, and Θ

- Let T, f be two monotone increasing functions that maps from \mathbb{N} to \mathbb{R}^{+}
- Asymptotic Upper Bounds
- We say $T(n)=O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$, such that for all $n \geq n_{0}$, we have $T(n) \leq c f(n)$
- Examples
- $T(n)=100 n+100 \Rightarrow T(n)=O(n)$
- $T(n)=p n^{2}+q n+r$ for constants $p, q, r,>0 \Rightarrow T(n)=O\left(n^{2}\right)$

O, Ω, and Θ

- Let T, f be two monotone increasing functions that maps from \mathbb{N} to \mathbb{R}^{+}
- Asymptotic Upper Bounds
- We say $T(n)=O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$, such that for all $n \geq n_{0}$, we have $T(n) \leq c f(n)$
- Examples
- $T(n)=100 n+100 \Rightarrow T(n)=O(n)$
- Set $c=1001$ and $n_{0}=100$
- $T(n)=p n^{2}+q n+r$ for constants $p, q, r,>0 \Rightarrow T(n)=O\left(n^{2}\right)$

O, Ω, and Θ

- Let T, f be two monotone increasing functions that maps from \mathbb{N} to \mathbb{R}^{+}
- Asymptotic Upper Bounds
- We say $T(n)=O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$, such that for all $n \geq n_{0}$, we have $T(n) \leq c f(n)$
- Examples
- $T(n)=100 n+100 \Rightarrow T(n)=O(n)$
- Set $c=1001$ and $n_{0}=100$
- $T(n)=p n^{2}+q n+r$ for constants $p, q, r,>0 \Rightarrow T(n)=O\left(n^{2}\right)$
- Set $c=p+q+r$ and $n_{0}=1$
- Also correct to say $T(n)=O\left(n^{3}\right)$

Remarks

- Equals sign. $O(f(n))$ is a set of functions, but computer scientists often write $T(n)=$ $O(f(n))$ instead of $T(n) \in O(f(n))$
- Consider $f(n)=5 n^{3}$ and $g(n)=3 n^{2}$, we write $f(n)=O\left(n^{3}\right)=g(n)$, but it does not mean that $f(n)=$ $g(n)$

Remarks

- Equals sign. $O(f(n))$ is a set of functions, but computer scientists often write $T(n)=$ $O(f(n))$ instead of $T(n) \in O(f(n))$
- Consider $f(n)=5 n^{3}$ and $g(n)=3 n^{2}$, we write $f(n)=O\left(n^{3}\right)=g(n)$, but it does not mean that $f(n)=$ $g(n)$
- Domain. The domain of $f(n)$ is typically the natural numbers $\{0,1,2, \ldots\}$
- Sometimes we restrict to a subset of the natural numbers. Other times we extend to the reals.

Remarks

- Equals sign. $O(f(n))$ is a set of functions, but computer scientists often write $T(n)=$ $O(f(n))$ instead of $T(n) \in O(f(n))$
- Consider $f(n)=5 n^{3}$ and $g(n)=3 n^{2}$, we write $f(n)=O\left(n^{3}\right)=g(n)$, but it does not mean that $f(n)=$ $g(n)$
- Domain. The domain of $f(n)$ is typically the natural numbers $\{0,1,2, \ldots\}$
- Sometimes we restrict to a subset of the natural numbers. Other times we extend to the reals.
- Nonnegative functions. When using big-O notation, we assume the functions involved are (asymptotically) nonnegative.

O, Ω, and Θ

- Let T, f be two monotone increasing functions that maps from \mathbb{N} to \mathbb{R}^{+}
- Asymptotic Lower Bounds
- We say $T(n)=\Omega(f(n))$ if there exists constants $\epsilon>0$ and $n_{0} \geq 0$, such that for all $n \geq n_{0}$, we have $T(n) \geq \epsilon f(n)$
- Examples
- $T(n)=p n^{2}+q n+r$ for constants $p, q, r,>0 \Rightarrow T(n)=\Omega\left(n^{2}\right)$
- Set $\epsilon=p$ and $n_{0}=1$
- Also correct to say $T(n)=\Omega(n)$
- Meaningful Statement. Any compare-based sorting algorithm requires Ω (nlogn) compares in the worst case.
- Meaningless Statement. Any compare-based sorting algorithm requires O (nlogn) compares in the worst case

O, Ω, and Θ

- Let T, f be two monotone increasing functions that maps from \mathbb{N} to \mathbb{R}^{+}
- Asymptotic Tight Bounds
- We say $T(n)=\Theta(f(n))$ if there exists constants $c_{1}, c_{2}>0$ and $n_{0} \geq 0$, such that for all $n \geq n_{0}$, we have $c_{1} \leq T(n) \leq c_{2}$
- Alternative definition
- $T(n)=\Theta(\mathrm{f}(\mathrm{n}))$ if $T(n)$ is both $O(f(n))$ and also $\Omega(\mathrm{f}(\mathrm{n}))$
- Examples
- $T(n)=p n^{2}+q n+r$ for constants $p, q, r>0 \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- Set $c_{1}=p, c_{2}=p+q+r$ and $n_{0}=1$
- $T(n)$ is neither $\Theta(\mathrm{n})$ nor $\Theta\left(n^{3}\right)$

Properties of Asymptotic Growth Rates

- If $f=O(g)$ and $g=O(h)$, then $f=O(h)$
- If $f=\Omega(g)$ and $g=\Omega(h)$, then $f=\Omega(h)$
- If $f=\Theta(g)$ and $g=\Theta(h)$, then $f=\Theta(h)$
- If $f=O(\eta)$ and $g=O(h)$, then $f+g=O(h)$
- If $\mathrm{g}=O(f)$, then $f+g=\Theta(\varphi)$
- If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c>0$, then $f=\Theta(\mathrm{g})$

Some Common Functions

- Polynomials. Let f be a polynomial of degree d, in which the coefficient a_{d} is positive. Then $f=O\left(n^{d}\right)$.
- Asymptotic rate of growth is determined by their "higher-order term".
- Polynomial-Time Algorithm: A polynomial-time algorithm is one with running time $O\left(n^{d}\right)$ for some constant d.
- Logarithms. For every $a, b>1$ and every $\chi>0$, we have $\log _{a} n=\Theta\left(\log _{b} n\right)=O\left(n^{\chi}\right)$
- No need to specify base (assuming it is a constant).
- Logarithms are always better than polynomials.
- Exponentials. For every $r>1$ and every $d>0$, we have $n^{d}=O\left(r^{n}\right)$.
- Polynomials are always better than exponentials.

More Notations

- Asymptotic Smaller
- We say $T(n)=o(f(n))$ if $\lim _{n \rightarrow \infty} \frac{T(n)}{f(n)}=0$
- Asymptotic Larger
- We say $T(n)=\omega(f(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{T(n)}=0$

O, Ω, and Θ with multiple variables

- Asymptotic Upper Bounds
- We say $T(m, n)=0(f(m, n))$ if there exists constants $\mathrm{c}>0$ and $m_{0} \geq 0$ and $n_{0} \geq 0$, such that for all $\mathrm{m} \geq m_{0}$ and $n \geq n_{0}$, we have $T(m, n) \leq c f(m, n)$.
- Similar definitions hold for Ω and Θ
- Examples
- $T(m, n)=32 m n^{2}+17 m n+32 n^{3}$
- $T(m, n)$ is both $O\left(m n^{2}+n^{3}\right)$ and $O\left(m n^{3}\right)$
- $T(m, n)$ is neither $O\left(n^{3}\right)$ nor $O\left(m n^{2}\right)$

Thank you

