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O, Q,and ©

« Let T, f be two monotone increasing functions that maps from N to R*

« Asymptotic Upper Bounds

- We say T(n) = 0(f(n)) if there exists constants ¢ > 0 and ny > 0, such that for all n = ny, we have

Tn) <cf(n)



O, Q,and ©

« Let T, f be two monotone increasing functions that maps from N to R*

« Asymptotic Upper Bounds

- We say T(n) = 0(f(n)) if there exists constants ¢ > 0 and ny > 0, such that for all n = ny, we have

T(n) <cf(n)

 Examples
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O, Q,and ©
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Remarks

« Equals sign. O(f(n)) is a set of functions, but computer scientists often write T(n) =
0(f(n)) instead of T(n) € 0(f(n))

- Consider f(n) = 5n% and g(n) = 3n?, we write f(n) = 0(n®) = g(n), but it does not mean that f(n) =
gm)
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Remarks

Equals sign. O(f(n)) is a set of functions, but computer scientists often write T(n) =
0(f(n)) instead of T(n) € 0(f(n))

- Consider f(n) = 5n% and g(n) = 3n?, we write f(n) = 0(n®) = g(n), but it does not mean that f(n) =
gm)

Domain. The domain of f(n) is typically the natural numbers {0,1,2, ...}
« Sometimes we restrict fo a subset of the natural numbers. Other fimes we extend to the reals.

Nonnegative functions. When using big-O notation, we assume the functions
involved are (asymptotically) nonnegative.



O, Q,and ©

Let T, f be two monotone increasing functions that maps from N to R*

Asymptotic Lower Bounds
- We say T(n) = Q(f(n)) if there exists constants e > 0 and ny = 0, such that for all n = ny, we have

T(n) =z ef (n)

Examples
e T(n) =pn®+ qn +r for constants p,q,r,> 0 = T(n) = Q(n?)
« Sete=pandny,=1
» Also correct to say T(n) = Q(n)

Meaningful Statement. Any compare-based sorting algorithm requires Q(nlogn)
compares in the worst case.

Meaningless Statement. Any compare-based sorting algorithm requires 0(nlogn)
compares in the worst case



O, Q,and ©

Let T, f be two monotone increasing functions that maps from N to R*

Asymptotic Tight Bounds

- We say T(n) = 0(f(n)) if there exists constants ¢;,c, > 0 and ny = 0, such that for alln = ny, we
hOVG C1 < T(n) < Cy

Alternative definition
 T(n) = 0O(f(n)) if T(n) is both 0(f(n)) and also Q(f(n))

Examples
« T(n) =pn? + qn +r for constants p,q,r > 0 = T(n) = O(n?)
« Setcy=p,c,=p+g+randn, =1
« T(n) is neither ©(n) nor B(n3)



Properties of Asymptotic Growth Rates

« Iff=0(g) and g = 0(h), then f = 0(h)

« If f =Q(g) and g = Q(h), then f = Q(h)

« If f =0(g9) and g = 0(h), then f = 0(h)
 Iff=0(m)and g =0(h), then f + g = 0(h)
* Ifg=0(f). then f + g = 0(¢p)

e If lim £ = ¢ > 0, then f = 0(g)

n—oo g(n)



Some Common Functions

* Polynomials. Let f be a polynomial of degree d, in which the coefficient a, is
positive. Then f = 0(n9).

« Asymptotic rate of growth is determined by their “higher-order term”.

« Polynomial-Time Algorithm: A polynomial-time algorithm is one with running time O(nd) for some
constant d.

« Logarithms. For every a,b > 1 and every y > 0, we have log,n = 0(logy,n) = 0(n¥)
* NoO need to specify base (assuming it is a constant).
« Logarithms are always better than polynomials.

- Exponentials. For every r > 1 and every d > 0, we have n¢ = 0(r™).
« Polynomials are always better than exponentials.



More Notations

« Asymptotic Smaller

. — i i 10U
We say T(n) = o(f(n)) if 7111_r)£10 o 0

« Asymptotic Larger

° — 1 1 m —
We say T(n) = w(f(n)) if Al_r)glo et 0



O, Q, and © with multiple variables

« Asymptotic Upper Bounds

« Wesay T(m,n) = O(f(m, n)) if there exists constants ¢ > 0 and my, = 0 and n, = 0, such that for all
m = my and n = ny, we have T(m,n) < cf(m,n).

« Similar definitions hold for Q and @

 Examples
« T(m,n) =32mn? + 17mn + 32n3
e T(m,n)is both 0(mn? + n®) and 0(mn?3)
« T(m,n) is neither 0(n®) nor 0(mn?)



Thank you



