

1 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

CS302: Data Structures – Bonus Assignment 2018

Theme: Robot Navigation

Dr. Kostas Alexis

Autonomous Robots Lab

www.autonomousrobotslab.com

Document Version 1.0 (October 1 2018)

http://www.autonomousrobotslab.com/

2 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Table of Contents:

 Section 1: Introduction to the Research Theme & this Assignment

 Section 2: Where am in the Environment?

 Section 3: Occupancy Grid Mapping

 Section 4: Occupancy Grid Mapping Assignment (Bonus Assignment 1/2)

 Section 5: Path Planning for Collision-free Navigation

 Section 6: Motion Planning using Rapidly-exploring Random Trees

 Section 7: Collision-free Path Planning Assignment (Bonus Assignment 2/2)

 Section 8: What now?

 References

3 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Section 1: Introduction to the Research Theme & this Assignment

Autonomous navigation of robotic systems is and will remain at the core of research

activities. It is only when navigation of robots is absolutely autonomous, robust and

resilient, that we can integrate them in complex and important tasks and applications.

This bonus assignment provides an avenue on how to use your knowledge on data

structures to solve (simplified) robot navigation problems.

More specifically, in this assignment you will deal with two major questions, namely:

1. How to represent the environment in a manner that facilitates efficient collision-free

path planning for autonomous robots.

2. How to utilize this representation to conduct autonomous path planning.

As you execute this assignment you will simultaneously have the opportunity to get

pointers to important topics in relation to robotics research. By all means, grasp the

opportunity and move forward towards being a researcher/engineer/scientist in robotics.

Highlight: This assignment has a lot of theory in it! This is an opportunity to study a bit about

robotics and get motivated for this field. You do not really need all this theory to execute

the assignment. But we feel it is better to offer the background rather than just focusing

on the simple questions of a course assignment only. The real world is quite complex.

Section 2: Where am I in the Environment?

One of the most fundamental questions for robotic systems is that of knowing where it is

in its environment. Acquiring GPS signals is a simple way to answer this question. But what

about when an environment is GPS-denied or GPS-degraded?

Modern robotics research has formally answered this question through a technique

called Simultaneous Localization And Mapping (SLAM). SLAM solutions typically rely on

the combination of certain exteroceptive and proprioceptive sensors such as

cameras/LiDARs and Inertial Measurement Units (accelerometers, gyroscopes)

respectively. In this assignment you will not deal with how to develop a SLAM algorithm

as this would way beyond its scope. But we start by mentioning the initial problem and

provide few good references in case you develop personal interest:

 Scaramuzza, D. and Fraundorfer, F., 2011. Visual odometry [tutorial]. IEEE robotics &

automation magazine, 18(4), pp.80-92.

 Durrant-Whyte, H. and Bailey, T., 2006. Simultaneous localization and mapping: part I.

IEEE robotics & automation magazine, 13(2), pp.99-110.

 Durrant-Whyte, H. and Bailey, T., 2006. Simultaneous localization and mapping: part I.

IEEE robotics & automation magazine, 13(2), pp.99-110.

4 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

When a robot is able to simultaneously answer the question, what is my pose (where am

I), and what is a map of the environment, then it also has to answer the question how to

efficiently store this map and use it to plan its actions. A common way to represent maps

are Point Clouds, a collection of <x,y,z> points representing “samples” from the

environment surfaces that may (or may not be) annotated with color. In case you want

to experiment with Point Clouds, there is a well-established library: http://pointclouds.org/

Figure 1 represents a visualization of a point cloud.

Figure 1. A point cloud of an underground setting autonomously reconstructed by a flying robot.

This representation may look visually appealing but it is in fact very computationally

expensive to process and manipulate. This implies that although we do want robots to

provide such high-quality results to their users, it may not be the best map representation

to facilitate efficient path planning and decision making. In response to this fact, the

robotics community has developed a set of alternative methods for robot-internal map

representations that are optimized for efficiency. One of them is called “Occupancy Grid

Maps”.

Section 3: Occupancy Grid Mapping

Occupancy Grid Mapping refers to a set of probabilistic approaches to the problem of

robot mapping that purely focuses on how sensor observations lead to inferring that

certain parts of the environment are free and available for navigation or occupied.

When we conduct occupancy grid mapping, we assume a SLAM solution – or any other

way to directly get the robot pose – is available and runs onboard.

http://pointclouds.org/

5 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

The basic idea of the occupancy grid is to represent a map of the environment as an

evenly spaced field of binary random variables each representing the presence of an

obstacle at that location in the environment. Occupancy grid algorithms compute

approximate posterior estimates for these random variables.

3.1 Introduction to Occupancy Grid Mapping

In further detail, the occupancy mapping algorithm estimates the posterior probability

over maps given the data 𝑝(𝑚|𝑧1:𝑡, 𝑥1:𝑡) where 𝑚 is the map, 𝑧1:𝑡 is the set of measurements

from time 1 to 𝑡, and 𝑥1:𝑡 is the set of robot poses from time 1 to 𝑡.

Occupancy grid algorithms represent the map 𝑚 as a fine-grained grid over the

continuous space of locations in the environment. The most common type of occupancy

grid maps are 2D maps that describe a slide of the 3D world. Nowadays, we tend to use

3D grid maps and you can find two good references at the end of this section.

If we let 𝑚𝑖 denote the grid cell with index 𝑖 (often in 2D maps, two indices < 𝑖, 𝑗 > are

used to represent the two dimensions), then the notation 𝑝(𝑚𝑖) represens the probability

that cell 𝑖 is occupied by an obstacle of the environment. The computational problem

with estimating the posterior probability 𝑝(𝑚|𝑧1:𝑡 , 𝑥1:𝑡) is the dimensionality of the problem:

if a map contains N grid cells, then the number of possible maps that can be represented

by tis gridding is 2𝑁. Now note that for average environments and reasonable resolutions

we need millions of grid cells. Therefore, calculating a posterior probability for all such

maps is not tractable.

The standard approach to resolve this problem in an efficient way, is to break down the

problem into a set of smaller problems of estimating 𝑝(𝑚𝑖|𝑧1:𝑡, 𝑥1:𝑡) for all grid cells 𝑚𝑖. Each

of these estimation problems is then a binary problem. This breakdown is convenient but

does of course lose some of the structure of the problem, since it does not enable

modeling dependencies among neighboring cells. Instead, the posterior of a map is

approximated by factoring it into 𝑝(𝑚|𝑧1:𝑡, 𝑥1:𝑡) = ∏ 𝑝(𝑚𝑖|𝑖 𝑧1:𝑡, 𝑥1:𝑡). Due to this

factorization, a binary Bayes Filter can be used to estimate the occupancy probability

for each grid cell. For convergence properties, it is common to use a log-odds

representation of the probability.

6 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

3.2 Pit Stop: A bit of introduction to the Bayes Filter

Bayes Filter is a probabilistic approach for estimating an

unknown probability density function recursively over time

using incoming measurements and a process model.

Before we write down the basic equations of this algorithm,

one needs to understand a bit deeper why do we truly need

it. For that it is important to stress that in robotics we almost

never have access to the true “world state” (the real state

of the robot in the world). We typically end up trying to

estimate the “belief state” (our best estimate of the world

state) in a manner that is close and converging to the “true”

robot state. For example, we try to make robots “estimate”

their position in a manner that is truly close to their true location in the world.

In principle, consider that you have two ways to acquire information for your robot,

namely:

 Through sensor observations – for example a camera, a gyroscope, barometer, GPS

 Through a model of your robot dynamics – its equations of motion

A sensor model can have a generic form 𝑧 = ℎ(𝑥) where 𝑥 is the true robot state. Now

one would think that we can just invert this equation and get 𝑥 from 𝑧 but unfortunately

this in general does not hold (for reasons we will not explain in this document). Also note

that sensor measurements are inaccurate, noisy and biased.

Similarly, a process model (or the model of the robot dynamics) can be represented by

some sort of equation 𝑥′ = 𝑔(𝑥, 𝑢) where 𝑢 are the control actions to the robot (e.g., its

motor commands). The problem here is that our model of the robot dynamics 𝑔 is

typically not accurate and trustworthy only within very short durations of time. So in

general for robots we estimate probability over sensor observations 𝑝(𝑧|𝑥) and a

probability over motion models probability over motion models 𝑝(𝑥′|𝑥, 𝑢).

All that may or may not sound relevant with CS302 but in fact, programming for

advanced engineering requires a good relationship with math. So we will in fact continue

but try to keep it straight and simple. So instead of a full textbook reference to the Bayes

Rule (which is what we need to introduce to continue this discussion) let us directly outline

a very simple example.

Example to understand the Bayes Rule: Assume you have a very simple quadrotor that its

only purpose in life is to find its landing zone. The landing zone is marked with many bright

lamps and this quadrotor has a light sensor onboard. Now consider the following:

 The robot is equipped with this light sensor and its output is binary, in other terms 𝑍 ∈

{𝑏𝑟𝑖𝑔ℎ𝑡, 𝑛𝑜𝑡_𝑏𝑟𝑖𝑔ℎ𝑡}

Figure 2. Robot belief of

a true state.

7 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

 The world state (what we try to infer) is also binary, or 𝑋 ∈ {ℎ𝑜𝑚𝑒, 𝑛𝑜𝑡_ℎ𝑜𝑚𝑒}

 Our sensor is not truly good and therefore the probability of it reporting bright when

the robot is actually on top of the landing zone is only 60% (𝑃(𝑍 = 𝑏𝑟𝑖𝑔ℎ𝑡|𝑋 = ℎ𝑜𝑚𝑒) =

0.6), while the probability of a false positive detection when the robot is not at home

is 30% (𝑃(𝑍 = 𝑏𝑟𝑖𝑔ℎ𝑡|𝑋 = 𝑛𝑜𝑡ℎ𝑜𝑚𝑒) = 0.3).

 We do not really know where the robot is initially so we assume that it may be either

at home or elsewhere with equal probability, therefore 𝑃(𝑋 = ℎ𝑜𝑚𝑒) = 0.5

Now you are tasked to find what is the probability, the robot’s confidence, that it is

actually at home after a single observation of the sensor reporting bright!

The mathematical rule to find an answer to this question is called the Bayes rule and as

quickly as possibly is summarized in the following equation:

Let’s apply it directly to our problem. We know in fact all terms other than the

denominator. For that we use the trick of “marginalization” of probabilities. The result is:

So the robot that didn’t know where it is really, after a single reading of an inaccurate

sensor already increased its confidence that it is above the landing zone by 17%! This is

the first message to get for robotics: they are probabilistic systems. For now, we will dive

into this further. This was motivation for you to study the underlying math topics.

3.3. Back to the Bayes Filter

A Bayes filter is an algorithm used for calculating the probabilities of multiple beliefs to

allow a robot to infer information for its state and/or the map. Essentially, Bayes filters

allow robots to continuously update their most likely position within a coordinate system,

based on the most recently acquired sensor data. This is a recursive algorithm. It consists

of two parts, namely “prediction” and “correction”.

8 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

The true state 𝑥 is assumed to be an unobserved Markov Process, and the measurements

𝑧 are the observed states of a Hidden Markov Model (HMM). If we also have robot inputs

𝑢 then the following diagram holds

Figure 3. Visualization of a Markov Process

In the Markov Assumption the of sensor observations only depend on the current state

Similarly, the current state depends only on previous state and current action.

This fact gives rise to a recursive process according to which one can estimate the robot

state by separating the so-called process update (by knowledge of the prior robot state

belief and current control actions) and correction update (by knowledge of sensor

readings). We will not dive any further. But a good reference for you is available at:

https://www.autonomousrobotslab.com/badgerworks.html

These concepts of recursive estimation find application in fundamental algorithms of

robotics such as the Kalman Filter and the Occupancy Grid Maps.

3.4. Occupancy Grid Mapping Algorithm Process

Let’s jump into the specifics of the problem for this assignment. Consider you have a robot

that is equipped with a sensor providing range readings as depicted below.

https://www.autonomousrobotslab.com/badgerworks.html

9 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Figure 4. A visualization of a range sensor.

Each one of the rays of the sensor tells you if there is a surface ahead and at what

distance. Now we want to estimate an occupancy map that is a grid of cells, each of

them annotated with a probability of being occupied. Remember a 2D occupancy map

looks like the following:

Figure 5. An occupancy grid map with no cell occupied.

With each < 𝑖, 𝑗 > corresponding to a location < 𝑥, 𝑦 > and being either free or occupied.

In other terms 𝑚𝑥,𝑦: {𝑓𝑟𝑒𝑒, 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑} → {0,1}. The challenge is how to probabilistically build

the confidence that any of these cells is either free or occupied given noisy and

imperfect sensor readings. Essentially we will build each of the probabilities 𝑝(𝑚𝑥,𝑦). We

build this based on range measurements.

When we receive a range measurement, it provides us knowledge of which map cells

that it went through are free, and which is the first occupied one it intersected with as

visualized with blue and yellow in the following Figure. Therefore, a single range

measurement is 𝑧~{0,1} (zero meaning free and one meaning occupied).

10 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Figure 6. A range measurement on an occupancy map.

Now as you understand that we see same cells from different perspectives and therefore

from new measurements, we can exploit that for accurate mapping. Let us write down

the probabilities for each cell with respect to its sensor reading. In other terms let us write

about the conditional probability 𝑝(𝑧|𝑚𝑥,𝑦). More specifically:

 𝑝(𝑧 = 1|𝑚𝑥,𝑦 = 1): True occupied measurement

 𝑝(𝑧 = 0|𝑚𝑥,𝑦 = 1): False free measurement

 𝑝(𝑧 = 1|𝑚𝑥,𝑦 = 0): False occupied measurement

 𝑝(𝑧 = 0|𝑚𝑥,𝑦 = 0): True free measurement

As you understand the reason that we have false measurements is because we model

sensor errors. Using a bit of rules applying to conditional probabilities let us re-write:

 𝑝(𝑧 = 1|𝑚𝑥,𝑦 = 1)

 𝑝(𝑧 = 0|𝑚𝑥,𝑦 = 1) = 1 − 𝑝(𝑧 = 1|𝑚𝑥,𝑦 = 1)

 𝑝(𝑧 = 1|𝑚𝑥,𝑦 = 0):

 𝑝(𝑧 = 0|𝑚𝑥,𝑦 = 0) = 1 − 𝑝(𝑧 = 1|𝑚𝑥,𝑦 = 0)

Now we have the understanding we need. We understand that sensors provide

measurements that are inaccurate, and we understand that we can have certain cases

of probabilities for the occupancy map. We remind ourselves the Bayes Rule, and

therefore we understand that our goal for every of the grid map cells is to find the

following posterior probability:

𝑝(𝑚𝑥,𝑦|𝑧) =
𝑝(𝑧|𝑚𝑥,𝑦)𝑝(𝑚𝑥,𝑦)

𝑝(𝑧)

where:

 𝑝(𝑚𝑥,𝑦|𝑧) is the posterior probability for cell 𝑚𝑥,𝑦

 𝑝(𝑧|𝑚𝑥,𝑦) is the observation likelihood for this cell

11 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

 𝑝(𝑚𝑥,𝑦) is the prior probability for this cell

 𝑝(𝑧) is the sensor/evidence confidence value

To find this we introduce a trick called “odds”. The “odds” of an event happening is

𝑂𝑑𝑑 ≔
(𝑋 ℎ𝑎𝑝𝑝𝑒𝑛𝑠)

(𝑋 𝑛𝑜𝑡 ℎ𝑎𝑝𝑝𝑒𝑛𝑠)
=

𝑝(𝑋)

𝑝(𝑋𝑐)

More conveniently when we use “Odd”

𝑂𝑑𝑑 ((𝑚𝑥,𝑦 = 1)𝑔𝑖𝑣𝑒𝑛 𝑧) =
𝑝(𝑚𝑥,𝑦 = 1|𝑧)

𝑝(𝑚𝑥,𝑦 = 0|𝑧)

Applying the Bayes Rule we can re-write the odd to include the sensor model term, and

prior term. After some algebraic manipulation we have:

𝑂𝑑𝑑:
𝑝(𝑚𝑥,𝑦 = 1|𝑧)

𝑝(𝑚𝑥,𝑦 = 0|𝑧)
=

𝑝(𝑧|𝑚𝑥,𝑦 = 1)𝑝(𝑚𝑥,𝑦 = 1)

𝑝(𝑧|𝑚𝑥,𝑦 = 0)𝑝(𝑚𝑥,𝑦 = 0)

And this equation becomes much more convenient if we apply a log function on it:

𝐿𝑜𝑔 − 𝑂𝑑𝑑: 𝑙𝑜𝑔
𝑝(𝑚𝑥,𝑦 = 1|𝑧)

𝑝(𝑚𝑥,𝑦 = 0|𝑧)
= 𝑙𝑜𝑔

𝑝(𝑧|𝑚𝑥,𝑦 = 1)𝑝(𝑚𝑥,𝑦 = 1)

𝑝(𝑧|𝑚𝑥,𝑦 = 0)𝑝(𝑚𝑥,𝑦 = 0)

After some manipulation:

𝐿𝑜𝑔 − 𝑂𝑑𝑑: 𝑙𝑜𝑔
𝑝(𝑚𝑥,𝑦 = 1|𝑧)

𝑝(𝑚𝑥,𝑦 = 0|𝑧)
= 𝑙𝑜𝑔

𝑝(𝑧|𝑚𝑥,𝑦 = 1)𝑝(𝑚𝑥,𝑦=1)

𝑝(𝑧|𝑚𝑥,𝑦 = 0)𝑝(𝑚𝑥,𝑦=0)
= 𝑙𝑜𝑔

𝑝(𝑧|𝑚𝑥,𝑦 = 1)

𝑝(𝑧|𝑚𝑥,𝑦 = 0)
+ 𝑙𝑜𝑔

𝑝(𝑚𝑥,𝑦=1)

𝑝(𝑚𝑥,𝑦=0)

To indicate the fact that we update our new belief based on prior and the confidence

of new sensor readings for a certain event happening (e.g., a cell being occupied) we

write:

logodd+ = logodd_meas + logodd-

Therefore, the map stores the log-odds of each cell and the measurement model is also

modeled as a log-odd. There are two things you need to remember when you apply this

rule:

1. The update step is only executed for cells for which you got measurements

2. The updated probabilities become priors for the next iteration of the algorithm in

future time steps

Therefore, the update becomes recursive. The update rule is logodd += logodd_meas

and as you understand it refers to a recursive formulation.

12 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Let us see how the update step takes place in further detail. The measurement model in

log-odd form is written as:

𝑙𝑜𝑔
𝑝(𝑧|𝑚𝑥,𝑦 = 1)

𝑝(𝑧|𝑚𝑥,𝑦 = 0)

We can receive two types of measurements (if for a certain cell, a measurement is

received), namely:

1. Cells with 𝑧 = 1

2. Cells with 𝑧 = 0

For the “occupied” measurements we write:

𝑙𝑜𝑔𝑜𝑑𝑑↓𝑜𝑐𝑐 = 𝑙𝑜𝑔
𝑝(𝑧 = 1|𝑚𝑥,𝑦 = 1)

𝑝(𝑧 = 1|𝑚𝑥,𝑦 = 0)

For the “free” measurements we write

𝑙𝑜𝑔𝑜𝑑𝑑↑𝑜𝑐𝑐 = 𝑙𝑜𝑔
𝑝(𝑧 = 0|𝑚𝑥,𝑦 = 0)

𝑝(𝑧 = 0|𝑚𝑥,𝑦 = 1)

Alright, we are ready for an example. Let us consider the following Constant

Measurement Model:

 𝑙𝑜𝑔𝑜𝑑𝑑↓𝑜𝑐𝑐 = 0.9

 𝑙𝑜𝑔𝑜𝑑𝑑↓𝑓𝑟𝑒𝑒 = 0.7

An remember the update rule: 𝑙𝑜𝑔𝑜𝑑𝑑+ = 𝑙𝑜𝑔𝑜𝑑𝑑↓𝑚𝑒𝑎𝑠, while at the initial condition (t0)

for all (x,y) cells of the map it holds that 𝑙𝑜𝑔𝑜𝑑𝑑 = 0.

First of all, we have to understand that the abovementioned initialization is equivalent to

setting 𝑝(𝑚𝑥,𝑦 = 1) = 𝑝(𝑚𝑥,𝑦 = 0) = 0.5 (same probability for each cell being occupied or

free).

Now let us assume we receive a new measurement from our range sensor which for the

moment let us also assume it is a single-ray one as shown below. Blue cells are measured

as empty and the yellow as occupied.

13 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Figure 7. Our first measurement on an occupancy map

We can now proceed to execute the update step.

 For the cells for which we receive an “occupied” measurement we update the

logodd respectively:

𝑙𝑜𝑔𝑜𝑑𝑑 ← 0 + 𝑙𝑜𝑔𝑜𝑑𝑑↓𝑜𝑐𝑐(= 0.9)

 Similarly, for the cells for which we receive a “free” measurement we update:

𝑙𝑜𝑔𝑜𝑑𝑑 ← 0 − 𝑙𝑜𝑔𝑜𝑑𝑑↓𝑓𝑟𝑒𝑒(= 0.7)

Note that we write 0 + 𝑙𝑜𝑔𝑜𝑑𝑑 … and 0 – 𝑙𝑜𝑔𝑜𝑑𝑑 … as initially we had no sensor readings

for any of the cells.

Now that we executed this first step let’s see what the map looks like:

Figure 8. Updated probabilities for measured cells. All “white” cells are with zero initial log-odd

value.

14 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

And then let’s further assume that the robot rotated and got a new measurement:

Figure 9. A second measurement with the sensor rotated compared to before.

Remember that we consider previous updates as new prior. This means we apply again

the same rule as before. If you re-do the following steps but now starting from you will see

that for the cells you have two measurements and they are free, their confidence of

being free will become even more certain, while you will also assign a 0.9 probability on

the new detected as occupied cell.

15 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Section 4: Occupancy Grid Mapping Assignment

Your assignment is as follows. Extend the above example by considering a sensor that

has multiple beams as shown below. Each sensor beam measurements up to 50 cells

away and they are placed with a radial step size of 15 degrees (as depicted).

Figure 10. Visualization of the range sensor used. It provides 13 range measurements, each of them

measuring up to 50 cells away.

Also consider that you are operating in a 1000x1000 grid map with each position on x

and y being from 1 to 1000 with 1 stepsize increments. Zero-Zero location is upper left

corner. Orientation zero for this robot means facing up north exactly as the above Figure.

The sensor detects all free cells it goes through but only the first occupied cell it intersects

with. In other terms, it does not see “behind” surfaces. In this environment, there is a

square obstacle in all cells with x index equal from 250 to 500 and y index from 250 to 500.

The robot has to detect the obstacle to navigate safely.

Now consider that you have a perfect estimate of your robot position and you know that

your robot moved through the points presenting in the following Figure:

16 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Figure 11. The robot locations and orientations fron which measurements were taken. You are

expected to use a 1000x1000 grid map.

Also note that the orientation with which the robot was facing, which also implies a

respective rotation of the sensor is also presented with the arrow.

Your assignment is about finding the resulting map after each of the aforementioned

steps of the robot.

17 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

To execute this assignment, you will need to address the following challenges:

Task 1: Define a Data Structure to save the Occupancy Map. Argue about which you

selected in terms of computational efficiency and memory needs.

Task 2: Do ray casting to find the cells through each sensor beam, at each location and

orientation, goes through and therefore find “free” and “occupied” measurements. Was

the selected data structure the ideal one for this operation?

Task 3: Introduce an additional 10th measurement and further update the map. This 10th

measurement can be at any free area of the map and with any robot orientation.

Task 4: Derive the algorithm efficiency/complexity analysis for the following steps: a)

Conducting ray casting to find which cells perceived by each of the sensor beams is free

or occupied, and b) updating all the required probabilities.

18 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Section 5: Path Planning for Collision-free Navigation

Assuming that the ability to estimate the robot pose and the map of its environment is

facilitated, then another major challenge is that of planning paths for collision-free

navigation. The literature consists of a series of approaches to the problem, including

using exact models, following a purely reactive paradigm, hybrid approaches,

probabilistic approaches utilizing sampling-based methods ore reinforcement learning

schemes. The applicability of each of these methods relates to its own strengths and

weaknesses, alongside the particular kinematic and dynamic configuration of the robot

at hand. In principle, one can visualize the role of collision-free path planning through the

following block diagram.

Figure 12. Block-diagram visualization of the path planner module receiving the current map of

the environment, the pose of the robot and its possible constraints and deriving a collision-free

path to be followed by the vehicle.

Generally, the goal of a collision-free path planning module is to compute a continuous

sequence of collision-free robot configurations connecting the initial and goal

configurations.

More formally: If 𝑊 denotes the robot’s workspace, and 𝑊𝑂𝑖 denotes the i-th obstacle,

then the robot’s free space, 𝑊𝑓𝑟𝑒𝑒, is defined as: 𝑊𝑓𝑟𝑒𝑒 = 𝑊 − (∪ 𝑊𝑂𝑖) and a path 𝑐 is

𝑐: [0,1] → 𝑊𝑓𝑟𝑒𝑒, where 𝑐(0) is the starting configuration 𝑞𝑠𝑡𝑎𝑟𝑡 and 𝑐(1) is the goal

configuration 𝑞𝑔𝑜𝑎𝑙.

As you understand, knowledge of the free and occupied parts of the environment comes

from the mapping step. Furthermore, if we assume that our system is modeled with a set

of differential equations, then the collision-free motion planning problem is defined as:

Consider a dynamical control system defined by an ODE of the form:
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢), 𝑥(0) = 𝑥𝑖𝑛𝑖𝑡

19 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

where is 𝑥 the state, 𝑢 is the control. Given an obstacle set 𝑋𝑜𝑏𝑠, and a goal set 𝑋𝑔𝑜𝑎𝑙, the

objective of the motion planning problem is to find, if it exists, a control signal 𝑢 such that

the solution of (1) satisfies 𝑥(𝑡) ∉ 𝑋𝑜𝑏𝑠 for all 𝑡 ∈ 𝑅+, and 𝑥(𝑡) ∈ 𝑋𝑔𝑜𝑎𝑙 for all 𝑡 > 𝑇, for some

finite 𝑇 ≥ 0. Return failure if no such control signal exists.

Section 6: Motion Planning using Rapidly-exploring Random Trees

Out of the multiple ways to conduct collision-free motion planning we will focus on

sampling-based algorithms. In sampling-based algorithms, solutions are computed

based on samples drawn from some distribution. Sampling-based algorithms retain some

form of completeness, e.g., probabilistic completeness or resolution completeness.

A particular sampling-based motion planner is that of using the so-called Rapidly-

exploring Random Trees (RRTs). RRTs are appropriate for single-query planning problems.

The idea is to build online a tree of robot configurations (e.g., robot locations and

orientations) exploring the region of the state space that can be reached from the initial

condition. At each step sample one point from 𝑋𝑓𝑟𝑒𝑒 and try to connect it to the closest

vertex in the tree. The methodology is very efficient, although it suffers from an effect

called “Voronoi Bias” (search for it! And also search for the solution – the RRT*).

In pseudo-code, the RRT algorithm has as follows:

𝑽 ← {𝒙𝒊𝒏𝒊𝒕}; 𝑬 ← 𝟎;

for i=1,…,N do:

 𝒙𝒓𝒂𝒏𝒅 ← 𝑺𝒂𝒎𝒑𝒍𝒆𝑭𝒓𝒆𝒆;

 𝒙𝒏𝒆𝒂𝒓𝒆𝒔𝒕 ← 𝑵𝒆𝒂𝒓𝒆𝒔𝒕(𝑮 = (𝑽, 𝑬), 𝒙𝒓𝒂𝒏𝒅);

 𝒙𝒏𝒆𝒘 ← 𝑺𝒕𝒆𝒆𝒓(𝒙𝒏𝒆𝒂𝒓𝒆𝒔𝒕, 𝒙𝒓𝒂𝒏𝒅);

 if 𝑶𝒃𝒔𝒕𝒂𝒄𝒍𝒆𝑭𝒓𝒆𝒆(𝒙𝒏𝒆𝒂𝒓𝒆𝒔𝒕, 𝒙𝒏𝒆𝒘) then:

 𝑽 ← 𝑽 ∪ {𝒙𝒏𝒆𝒘}; 𝑬 ← 𝑬 ∪ {(𝒙𝒏𝒆𝒂𝒓𝒆𝒔𝒕, 𝒙𝒏𝒆𝒘)};

return 𝑮 = (𝑽, 𝑬);

where 𝑁 is the number of iterations, “SampleFree” samples a random <x,y> and

heading configuration within 𝑋𝑓𝑟𝑒𝑒, “Nearest” identifies the nearest previously sampled

vertex (typically in a Euclidean Distance sense), “Steer” finds the connection path (which

for the case of a quadrotor can be a straight edge between 𝑥𝑟𝑎𝑛𝑑 and 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 and

therefore in this case 𝑥𝑛𝑒𝑤 = 𝑥𝑟𝑎𝑛𝑑), the “ObstacleFree” function checks if the connection

between 𝑥𝑟𝑎𝑛𝑑 and 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 intersects with an obstacle (therefore you need the map!),

while if this is not the case then we add the vertex to the set of vertices 𝑉 and the new

edge to set of edges 𝐸. This algorithm builds the tree and our only last goal is to identify

when a certain admissible path arrives close (relevant to a fixed distance radius 𝑟 defined

by the user) to the goal configuration. If we find one, then we have a solution. We keep

20 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

running the algorithm if we have time and resources available in order to find alternative

paths that may have smaller cost, i.e. they also arrive to the goal configuration but their

length is shorter. A visualization of the execution of the RRT algorithm is shown in the

images below.

21 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Figure 13. Steps of the execution of the RRT algorithm.

Two good references for the RRT algorithm are the following:

1. LaValle, S.M., 1998. Rapidly-exploring random trees: A new tool for path

planning.

2. LaValle, S.M., 2006. Planning algorithms. Cambridge university press.

Section 7: Collision-free Path Planning Assignment

For your assignment you are called to implement RRT to derive collision free paths for a

robot that has no kinematic constraints. Your robot operates on a 2D occupancy map

identical to the one discussed in Section 4. You can sample only on <x,y> robot

configurations and neglect heading orientation. You are requested to implement RRT

such that you derive a collision-free path that connections the following initial and goal

robot configurations:

 Initial Robot Configuration: <x,y> = <70,422>

 Final Robot Configuration: <x,y> = <658,435>

For your report include images of both the tree and the derived path in a manner

analogous to the screenshot shown below.

Figure 14. Sampling-based motion planning for in-contact navigation of aerial robots.

22 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

Section 8: What now?

If you liked this assignment, or if you found it too easy and want to explore more, please

do one of the following:

 Contact us at kalexis@unr.edu or by talking to any other member of the

Autonomous Robots Lab (www.autonomousrobotslab.com)

 Find out projects we propose for students here

https://www.autonomousrobotslab.com/student-projects2.html or design one on

your own and let us know for your ideas.

 Build a community of undergrads in robotics – join “BadgerWorks”:

https://www.autonomousrobotslab.com/badgerworks.html

Want motivation? Watch videos of our work at:

 https://www.autonomousrobotslab.com/autonomous-navigation-and-

exploration.html

 https://www.autonomousrobotslab.com/fixed-wing-uavs.html

 https://www.autonomousrobotslab.com/agile-and-physical-interaction-

control.html

And other links available at: https://www.autonomousrobotslab.com/

mailto:kalexis@unr.edu
http://www.autonomousrobotslab.com/
https://www.autonomousrobotslab.com/student-projects2.html
https://www.autonomousrobotslab.com/badgerworks.html
https://www.autonomousrobotslab.com/autonomous-navigation-and-exploration.html
https://www.autonomousrobotslab.com/autonomous-navigation-and-exploration.html
https://www.autonomousrobotslab.com/fixed-wing-uavs.html
https://www.autonomousrobotslab.com/agile-and-physical-interaction-control.html
https://www.autonomousrobotslab.com/agile-and-physical-interaction-control.html
https://www.autonomousrobotslab.com/

23 | P a g e - C S 3 0 2 : D a t a S t r u c t u r e s – B o n u s A s s i g n m e n t o n R o b o t N a v i g a t i o n

References

1. Thrun, S., Burgard, W. and Fox, D., 2005. Probabilistic robotics. MIT press.

2. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D. and Arkin, R.C., 2011. Introduction to

autonomous mobile robots. MIT press.

3. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C. and Burgard, W., 2013.

OctoMap: An efficient probabilistic 3D mapping framework based on octrees.

Autonomous Robots, 34(3), pp.189-206.

4. Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R. and Nieto, J., 2017, September.

Voxblox: Incremental 3d euclidean signed distance fields for on-board mav planning.

In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on

(pp. 1366-1373). IEEE.

5. Scaramuzza, D. and Fraundorfer, F., 2011. Visual odometry [tutorial]. IEEE robotics &

automation magazine, 18(4), pp.80-92.

6. Durrant-Whyte, H. and Bailey, T., 2006. Simultaneous localization and mapping: part I.

IEEE robotics & automation magazine, 13(2), pp.99-110.

7. Durrant-Whyte, H. and Bailey, T., 2006. Simultaneous localization and mapping: part I.

IEEE robotics & automation magazine, 13(2), pp.99-110.

8. LaValle, S.M., 1998. Rapidly-exploring random trees: A new tool for path planning.

9. LaValle, S.M., 2006. Planning algorithms. Cambridge university press.

10. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H. and Siegwart, R., 2016, May. Receding

horizon" next-best-view" planner for 3d exploration. In Robotics and Automation

(ICRA), 2016 IEEE International Conference on (pp. 1462-1468). IEEE.

