

[CS302-Data Structures] Homework 2: Stacks

Instructor: Kostas Alexis

Teaching Assistants: Heyang Qin, Hemanta Sapkota, Huan Nguyen

Fall 2020 Semester

Section 1. Stack ADT – Overview wrt Provided Code [supports explanation of provided code]

Section 2. Implementation Approaches [supports explanation of provided code]

Section 3. Compilation Directions wrt Provided Code [supports explanation of provided code]

Section 4. Testing [supports explanation of provided code]

Section 5. Programming Exercise 1

Section 6. Programming Exercise 2

Section 1. Stack ADT – Overview wrt Provided Code

Data Items

The data items in a stack are of generic DataType.

Structure

The stack data items are linearly ordered from the most recently added (the top) to the

least recently added (the bottom). This is a LIFO scheme. Data items are inserted onto

(pushed) and removed from (popped) the top of the stack.

Operations

Stack (int maxNumber = MAX_STACK_SIZE)

 Requirements

None

 Results

Constructor. Creates an empty stack. Allocates enough memory for a stack containing

maxNumber data items (if necessary).

Stack (const Stack& other)

 Requirements

None

 Results

Copy constructor. Initializes the stack to be equivalent to the other Stack object

parameter.

Stack& operator= (const Stack& other)

 Requirements

None

 Results

Overloaded assignment operator. Sets the stack to be equivalent to the other Stack

object parameter and returns a reference to the modified stack.

~Stack()

 Requirements

None

 Results

Destructor. Deallocates the memory used to store the stack.

void push (const DataType& newDataItem) throw (logic_error)

 Requirements

Stack is not full.

 Results

Inserts newDataItem onto the top of the stack.

DataType pop() throw (logic_error)

 Requirements

Stack is not empty

 Results

Removes the most recently added (top) data item from the stack and returns the value

of the deleted item.

void Clear()

 Requirements

None

 Results

Removes all the data items in the stack.

bool isEmpty() const

 Requirements

None

 Results

Returns true if the stack is empty. Otherwise, returns false.

bool isFull () const

 Requirements

None

 Results

Returns true if the stack is full. Otherwise, returns false.

void showStructure() const

 Requirements

None

 Results

Outputs the data items in a stack. If the stack is empty, it outputs “Empty stack”. Note

that this operation is intended for testing/debugging purposes only. It only supports stack

data items that are one of c++ predefined data types (int, char, etc) or other data

structures with overridden ostream operator<<.

Section 2. Implementation Approaches

As in the class, we consider both

 Array-based implementations

 Linked-List implementations

For studying we refer you to the course slides.

Section 3. Compilation Directions wrt Provided Code

Edit config.h and change the value of LAB6_TEST1 to 1 to test the link-based

implementation. If set to 0, then the array-based implementation is tested. Recompile

test6.cpp. For this assignment work with link-based implementation!

Section 4. Testing

Test your implementation of the linked list Stack ADT using the program in the file

test6.cpp.

Section 5. Programming Exercise 1

We commonly write arithmetic expressions in the so-called infix form. That is, with each

operator placed between its operand, as below

(5+6)*(4/3)

Although we are comfortable writing expressions in this form, infix form has the

disadvantage that parentheses must be used to indicate the order in which operators

are to be evaluated. These parentheses, in turn, complicate the evaluation process.

Evaluation is much easier if we can simply evaluate operators from left to right.

Unfortunately, this evaluation will not work with the infix form of arithmetic expressions.

However, it will work if the expression is in postfix form. In the postfix form of an arithmetic

expression, each operator is placed immediately after its operands. The expression

above is written in postfix form as

56+43/*

Note that both forms place the numbers in the same order (reading from left to right).

The order of the operators is different, however, because the operators in the postfix form

are positioned in the order that they are evaluated. The resulting postfix expression is hard

to read at first, but it is easy to evaluate programmatically. We will do so with stacks.

Suppose you have an arithmetic expression in postfix form that consists of a sequence of

single digit, nonnegative integers and the four basic arithmetic operators (+,-,*,/). This

expression can be evaluated using the following algorithm in conjuction with a stack of

floating-point numbers.

Read the expression character-by-character. As each character is read in:

 If the character corresponds to a single digit number (characters ‘0’ to ‘9’), then

push the corresponding floating-point number onto the stack.

 If the character corresponds to one of the arithmetic operators (characters ‘+’, ‘-

‘, ‘*’, ‘/’), then

o Pop a number off of the stack. Call it operand1.

o Pop a number off of the stack. Call it operand 2.

o Combine these operands using the arithmetic operartor, as follows

 Result = operand2 operator operand1

o Push result onto the stack.

When the end of the expression is reached, pop the remaining number off the stack. This

number is the value of the expression. Applying this algorithm to the arithmetic expression

34+52/*

Results 17.5 as expected.

Exercise 1. Assignment 1. Create a program that reads the postfix form of an arithmetic

expression, evaluates it, and outputs the result. Assume that the expression consists of

single-digit, nonnegative integers (‘0’ to ‘9’) and the FIVE basic arithmetic operators

(‘+’,’-‘,’*’,’/’,’^’) (note to correctly handle ‘^’). Further assume that the arithmetic

expression is input from the keyboard with all the characters separated by white space

on one line. Save your program in a file called postfix.cpp

Exercise 1. Assignment 2. Create a test plan involving the execution of 5 expressions for

which you must provide the infix and postfix notations, alongside their result in your report

document.

Section 6. Programming Exercise 2

One of the tasks that compilers and interpreters must frequently perform is deciding

whether some pair of expression delimeters are properly paired, even if they are

embedded multiple pairs deep. Consider the following C++ expression.

a=(f(b)-(c+d))/2;

The compiler has to be able to determine which pairs of opening and closing

parentheses go together and whether the whole expression is correctly parenthesized. A

number of possible errors can occur because of incomplete pairs of parentheses – more

of one than the other – or because of improperly placed parentheses. For instance, the

expression below lacks a closing parenthesis.

a=(f(b)-(c+2)/2;

A stack is extremely helpful in implementing solutions to this type of problem because of

its LIFO behavior. A closing parenthesis needs to be matched with the most recently

encountered opening parenthesis. This is handled by pushing opening parentheses onto

a stack as they are encountered. When a closing parenthesis is encountered, it should

be possible to pop the matching opening parenthesis off the stack. If it is determined that

every closing parenthesis had a matching opening parenthesis, then the expression is

valid.

bool delimetersOk (const string& expression)

 Requirements

None

 Results

Returns true if all the parentheses and braces in the string are legally paired. Otherwise,

returns false.

Exercise 2. Assignment 1. Save a copy of the delimiters.cs as delimeters.cpp. Implement

the delimetersOk operation inside the delimeters.cpp program.

Exercise 2. Assignment 2. Add test 5 cases that check whether your implementation of

the delimtersOk operation correctly detects improperly paired delimeters in input

expressions.

