

[CS302-Data Structures] Homework 5: Heap ADT using STL

Instructor: Kostas Alexis

Teaching Assistants: Tung Dang, Mustafa Solmaz

Fall 2019 Semester

Section 1. Heaps with STL

Section 2. Exercise on using STL for Heaps

Section 1. Heaps using STL

A Heap data structure can be efficiently implemented in a range using the C++ Standard

Template Library (STL). STL is a massive software library for C++ that provides four

components, namely a) algorithms, b) containers, c) functions, and d) iterators. STL

provides a set of common classes for C++, such as containers and associative arrays that

can be used with any built-in type and with any user-defined type that supports certain

elementary operations (e.g., copying and assignment). STL algorithms are independent

of containers, which then significantly reduces the complexity of the library.

STL achieves its results through the use of templates. This approach provides compile-time

polymorphism that is often more efficient than traditional run-time polymorphism. Modern

C++ compilers are tuned to minimize abstraction penalties arising from heavy use of STL.

Using the STL you can build and use a Heap efficiently. The whole process relies on the

use of certain subsets of the library. There are certain operations to focus on, such as:

make_heap(): Rearranges the elements in the range [first,last) in such a way that they

form a heap.

Detailed reference: https://tinyurl.com/3ykcorl

push_heap(): Given a heap in the range [first,last-1), this function extends the range

considered a heap to [first,last) by placing the value in (last-1) into its corresponding

location within it.

Detailed reference: https://tinyurl.com/ydbdq6wm

pop_heap(): Rearranges the elements in the heap range [first,last) in such a way that the

part considered a heap is shortened by one: The element with the highest value is moved

to (last-1).

Detailed reference: https://tinyurl.com/ycfcb2cr

sort_heap(): Sorts the elements in the heap range [first,last) into ascending order.

Detailed reference: https://tinyurl.com/yd763ywt

https://tinyurl.com/3ykcorl
https://tinyurl.com/ydbdq6wm
https://tinyurl.com/ycfcb2cr
https://tinyurl.com/yd763ywt

is_heap(): Returns true if the range [first,last) forms a heap, as if constructed with

make_heap.

Detailed reference: https://tinyurl.com/y848x8wv

is_heap_until(): Returns an iterator to the first element in the range [first,last) which is not

in a valid position if the range is considered a heap (as if constructed with make_heap).

Detailed reference: https://tinyurl.com/yaol9jau

An example use of STL to make a heap is shown below:

#include<iostream>

#include<algorithm> // for heap operations

using namespace std;

int main()

{

 // Initializing a vector

 vector<int> v1 = {10, 30, 100, 40, 20};

 // Converting vector into a heap

 // using make_heap()

 make_heap(v1.begin(), v1.end());

 // Displaying the maximum element of heap

 // using front()

 cout << "The maximum element of heap is : ";

 cout << v1.front() << endl;

 return 0;

}

Similarly, you may sort such a heap through:

#include<iostream>

#include<algorithm> // for heap operations

using namespace std;

int main()

{

 // Initializing a vector

 vector<int> v1 = {10, 30, 100, 40, 20};

 // Converting vector into a heap

 // using make_heap()

 make_heap(v1.begin(), v1.end());

https://tinyurl.com/y848x8wv
https://tinyurl.com/yaol9jau

 // Displaying the maximum element of heap

 // using front()

 cout << "The maximum element of heap is : ";

 cout << v1.front() << endl;

 // using push_back() to enter element

 // in vector

 v1.push_back(50);

 // using push_heap() to reorder elements

 push_heap(v1.begin(), v1.end());

 // Displaying the maximum element of heap

 // using front()

 cout << "The maximum element of heap after push is : ";

 cout << v1.front() << endl;

 // using pop_heap() to delete maximum element

 pop_heap(v1.begin(), v1.end());

 v1.pop_back();

 // Displaying the maximum element of heap

 // using front()

 cout << "The maximum element of heap after pop is : ";

 cout << v1.front() << endl;

 return 0;

}

Section 2. Exercise on using STL for Heaps

In this exercise, your goal is to familiarize yourself with respect to how to use the STL to

implement and operate on a heap data structure.

Exercise 1. Using STL for Heaps

Utilize STL to

1. Make a heap consisting of 100 random integers.

2. Add a new value that is the mean of the random values you created in the previous

step. Floor the value if needed.

3. Delete the maximum element of the heap and

4. Sort the heap.

Deliver code, a TXT file with the output of the terminal and a short report.

