

Introduction to Aerial Robotics

Final exam, May 11, 2016

Kostas Alexis

Student Information	
First Name:	
Last Name:	
Student ID:	
Department:	
Undergraduate:	Graduate:
Prob. 1 (10%/10%):	
Prob. 2 (10%/10%):	
Prob. 3 (20%/20%):	
Prob. 4 (25%/25%):	
Prob. 5.a (35%/25%):	
Prob. 5.b (0%/10%):	(only for grad)
Total:	-

Problem 1: Provide very brief answers to the following questions:

- The inverse of a rotation matrix describing the body-to-vehicle frame transformation of a robot orientation is also its
- The minimum amount of satellites to acquire GPS-based position information on Earth is
- In a Kalman Filter, one has to run equal amount of prediction and correction steps:
 True / False
- Unconstrained Linear Model Predictive Control is a nonconvex optimization problem
 True/False
- RRT is a probabilistically complete algorithm for collision-free waypoint navigation
 True/False
- Frontier-based exploration methods always guarantee complete coverage
 True/False

Problem 2: Consider a hexacopter Micro Aerial Vehicle executing a set of maneuvers, namely:

- A roll turn of π/4
- A pitch turn of $-\pi/3$
- A yaw turn of $\pi/4$

Describe the relation between the body frame (F_B) velocities u, v, w and the inertial frame (F_I) velocities p_n, p_e, p_d after the combination of all these maneuvers.

Problem 2: Consider the following sensor-based test data and scenario:

- Scenario: we are using a sensor which detects a specific color (i.e. yellow) and checks
 the clothes of people entering a mall. It raises a positive True flag when the person
 is estimated to wear yellow clothes, and zero False flag otherwise.
- Scenario data: We know that only 5% of the population wears this color.
- <u>Sensor data 1:</u> Given that a person entering the mall wears yellow clothes, then the probability of the sensor reading being positive is 90%.
- <u>Sensor data 2:</u> Given that a person entering the mall is not wearing any yellow clothes, then the probability of the sensor reading being positive is 20%.

What is the probability of a person actually wearing yellow clothes when the sensor outputs a positive result?

Problem 4: Considering the problem of Collision-free navigation from an initial configuration x_0 to a final configurations set X_f , taking place in an environment with X_{Obs} representing the obstacle space and X_{free} the collision-free world, answer the following:

 Describe the Rapidly-exploring Random Tree algorithm (RRT) providing a pseudocode overview as well as a drawing example based on the following diagram.

Solution:

Description of the pseudocode

Explain RRT with a drawing

Problem 5.a: Let the following decoupled and linearized representation of a rotorcraft MAV roll dynamics:

$$\begin{bmatrix} \dot{\phi} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \phi \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ 1/J_x \end{bmatrix} M_x$$

Design a simple control structure C(s) capable of ensuring stability for the aforementioned system. The control structure should be placed in the following way:

Problem 5.b (Graduate level only): For the following representation of the linear acceleration around the y axis –and given that all rotations are negligible– design the simplest possible control structure that provides stability for the velocity dynamics of the vehicle $v_{\nu} = \dot{y}$.

$$\ddot{y} = g\phi$$

Again the control loop takes the form:

