CS491/691: Introduction to Aerial Robotics

 Topic: Time Derivatives in 2 Frames
Time Derivatives in 2 Frames

- Time Derivatives in a Rotating Frame:
- Introduce the unit vectors i, j, k representing standard unit basis vectors in the rotating frame. As they rotate they will remain normalized. If we let them rotate at a speed Ω about an axis $\boldsymbol{\Omega}$ then each unit vector \boldsymbol{u} of the rotating coordinate system abides by the rule:

$$
\frac{d}{d t} \mathbf{u}=\mathbf{\Omega} \times \mathbf{u}
$$

- Then if we have a unit vector:

$$
\mathbf{f}(t)=\mathbf{f}_{x}(t) \mathbf{i}+\mathbf{f}_{y}(t) \mathbf{j}+\mathbf{f}_{z}(t) \mathbf{k}
$$

- To examine its first derivative - we have to use the product rule of differentiation:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{f} & =\frac{d f_{x}}{d t} \mathbf{i}+\frac{d \mathbf{i}}{d t} f_{x}+\frac{d f_{y}}{d t} \mathbf{j}+\frac{d \mathbf{j}}{d t} f_{y}+\frac{d f_{z}}{d t} \mathbf{k}+\frac{d \mathbf{k}}{d t} f_{z} \Rightarrow \\
\frac{d}{d t} \mathbf{f} & =\left[\left(\frac{d}{d t}\right)_{r}+\Omega \times\right] \mathbf{f}
\end{aligned}
$$

Time Derivatives in 2 Frames

- Time Derivatives in a Rotating Frame:
- Introduce the unit vectors i, j, k representing standard unit basis vectors in the rotating frame. As they rotate they will remain normalized. If we let them rotate at a speed Ω about an axis $\boldsymbol{\Omega}$ then each unit vector \boldsymbol{u} of the rotating coordinate system abides by the rule:

$$
\frac{d}{d t} \mathbf{u}=\mathbf{\Omega} \times \mathbf{u}
$$

- Then if we have a unit vector:

$$
\mathbf{f}(t)=\mathbf{f}_{x}(t) \mathbf{i}+\mathbf{f}_{y}(t) \mathbf{j}+\mathbf{f}_{z}(t) \mathbf{k}
$$

- To examine its first derivative - we have to use the product rule of differentiation:

$$
\begin{aligned}
& \frac{d}{d t} \mathbf{f}=\frac{d f_{x}}{d t} \mathbf{i}+\frac{d \mathbf{i}}{d t} f_{x}+\frac{d f_{y}}{d t} \mathbf{j}+\frac{d \mathbf{j}}{d t} f_{y}+\frac{d f_{z}}{d t} \mathbf{k}+\frac{d \mathbf{k}}{d t} f_{z} \Rightarrow \\
& \frac{d}{d t} \mathbf{f}=\left[\left(\frac{d}{d t}\right)_{r}+\Omega \times\right] \mathbf{f}
\end{aligned}
$$

Time Derivatives in 2 Frames

- As a result: Relation Between Velocities in the Inertial \& Rotating Frame
- Let v be the position of an object's position:

$$
\mathbf{v}=\frac{d}{d t} \mathbf{p}
$$

- Then the relation of the velocity as expressed in the inertial frame and as expressed in the rotating frame becomes:

$$
\mathbf{v}_{i}=\mathbf{v}_{r}+\Omega \times \mathbf{p}
$$

- Similarly: Relation Between Accelerations in the Inertial \& Rotating Frame
- Let \boldsymbol{a} be the acceleration of an object's position. Then:

$$
\mathbf{a}_{i}=\left(\frac{d \mathbf{p}}{d t}\right)_{i}=\left(\frac{d \mathbf{v}}{d t}\right)_{i}=\left[\left(\frac{d}{d t}+\boldsymbol{\Omega} \times\right)\right]\left[\left(\frac{d \mathbf{p}}{d t}\right)_{r}+\boldsymbol{\Omega} \times \mathbf{p}\right]
$$

- Carrying out the differentiations:

$$
\mathbf{a}_{r}=\mathbf{a}_{i}-2 \boldsymbol{\Omega} \times \mathbf{v}_{r}-\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{p})-\frac{d \boldsymbol{\Omega}}{d t} \times \mathbf{p}
$$

- Subscripts i, r represent the inertial frame and the rotating frame respectively.

Thank you! Rease ask your questions

