CS 491/691: Introduction to Aerial Robotics Delta Drone

Murillo Bonetto, Mathew Boggs Jason Rush, Brandon Takahashi

Motivation and Problem Description

- Motivation
 - Explore the basic concepts and methodologies involved in modern aerial robotics along with their real-world applications
- Problem
 - Implement a viable, fixed-wing, deltaconfiguration UAV with both manual and autonomous flight capabilities
- Application
 - Data collection through both simple and complex sensor systems during short flights

Proposed Approach

- Hardware
 - Drone assembly and semi-fixed components
- Firmware
 - QGroundControl
 - Calibrate sensors
 - Calibrate remote
- External Software
 - ROS/MAVROS on laptops
- External Integration w/ Software
 - Connected to PX4 w/ laptops
 - Confirmed communication/data gathering
- Internal Software
 - ROS/MAVROS on NUC
- Internal Integration w/ Software
 - Connected NUC to PC4
 - SSH into NUC for "remote" access

System Description

- Delta-Configuration UAV Plane
- Pixhawk flight controller handling flight mechanics
- Intel NUC for Data Collection and Video Recording
 - Running ROS Indigo

• GPS, Accelerometer, Magnetometer, and Air Speed Sensors for inflight measurements

Unfinished hardware internals

Screenshot from qgroundcontrol

Screenshot from ROS

CS 491/691 Introduction to Aerial Robotics, Delta Drone, Instructor: Dr. Kostas Alexis

Results

- Hardware successfully assembled and ground-tested
- Firmware configured for Delta Drone flight mechanics
- Initial setup of Intel NUC complete for use in data collection and video recording
- Capable of autonomous flight
- System ready for flight testing first planned flight on 4/30

