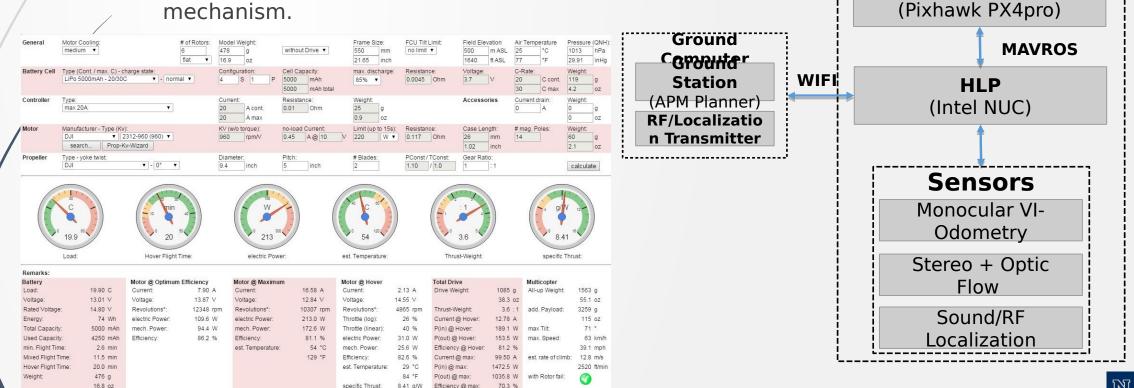
Development of a Multirotor Aerial Vehicle capable of Autonomous Navigation

Project members:

Shehryar Khattak, Aswathi Sandeep Adarsh Kesireddy, Frank Mascarich

Motivation and Problem Description

- Development of a platform that is:
 - Small enough to fly indoors.
 - Powerful enough to carry higher payload.
 - Off-the-shelf parts:
 - Keep cost low.
 - Easily replaceable/repairable/replicable.
 - A platform that can support different sensor modalities.
 - Monocular Vision.
 - Stereo Vision.
 - Sound Localization.



Proposed Approach

- System Design:
 - Reiterative approach.
 - Initial system weight guess (\sim 1700).
 - Design for Thrust to Weight ratio of 2.5-3.
- Modular Design:
 - Each Sensor on with it's on mounting mechanism.

0.3 oz/M

On-

Board

Physical System

Frame

(DJI F550)

Propulsion System

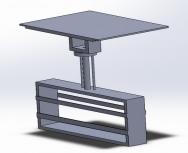
(2312,960Kv + 9450 Props)

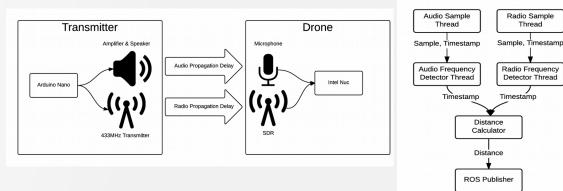
Autopilot

System Description

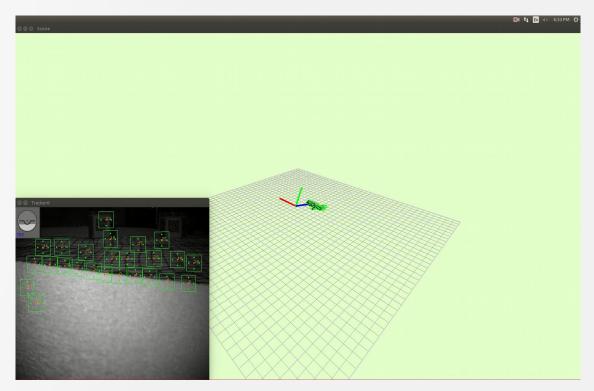
Monocular System:

Π


- Purpose: VI-Odometry.
 - Hardware: Pointgrey Chameleon 3 + UM7 IMU.
- Software: ROVIO1.


Stereo System:

- Purpose: Optic Flow / VI SLAM.
- Hardware: PSeye Camera + UM7 IMU + Gimbal System.
- Software: Custom ROS package.
- Sound/RF Localization:
 - Purpose: Distance Estimation using sound and RF delay propagation.
 - Hardware: Arduino + Transmitter/Receiver.
 - Software: Python Script + ROS Package.


¹Bloesch, Michael, Omari, Sammy, Hutter, Marco and Siegwart, Roland Yves. Robust Visual Inertial Odometry Using a Direct EKF-Based Approach. ETH-Zürich (IROS 2015).

Results

- Working Robot capable of carrying heavier payloads.
- Computational and Sensory Capability of doing autonomous indoor navigation.

Thank you

Questions, Comments, Suggestions, Criticism, Witticism.....