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SUMMARY
A new algorithm, called rapidly exploring random tree of trees (RRTOT) is proposed, that aims to
address the challenge of planning for autonomous structural inspection. Given a representation of
a structure, a visibility model of an onboard sensor, an initial robot configuration and constraints,
RRTOT computes inspection paths that provide full coverage. Sampling based techniques and a
meta-tree structure consisting of multiple RRT∗ trees are employed to find admissible paths with
decreasing cost. Using this approach, RRTOT does not suffer from the limitations of strategies that
separate the inspection path planning problem into that of finding the minimum set of observation
points and only afterwards compute the best possible path among them. Analysis is provided on the
capability of RRTOT to find admissible solutions that, in the limit case, approach the optimal one.
The algorithm is evaluated in both simulation and experimental studies. An unmanned rotorcraft
equipped with a vision sensor was utilized as the experimental platform and validation of the
achieved inspection properties was performed using 3D reconstruction techniques.

KEYWORDS: Inspection path planning; Coverage path planning; Aerial robotics; Unmanned aerial
vehicles.

1. Introduction
The vision of autonomous structural inspection operations has always inspired the research community
due to its great potential in real-life applications as well as the scientific challenges it poses. Nowadays,
addressing this problem efficiently gains further interest as robots have proven their capabilities in
information gathering. Either in the form of unmanned ground,1 aerial2 or even underwater3 vehicles
and utilizing vision,2, 4, 5 LiDARs1 or other sensing devices, robots are capable of perceiving the
environment and acquiring data remotely, safely and with low cost. As infrastructure ages and
extends, and as the potential safety threats grow, the need for precise, frequent and time-efficient
structural inspection has increased.

To address the challenges of autonomous inspection operations, a robot has to be able to compute
an efficient path that results in full coverage of the structure to be inspected. This problem belongs
to the class of coverage problems and despite the interest it has attracted, its inherent complications
still limit the performance of the proposed solutions.

The survey in ref. [6] and the references therein provide a comprehensive overview of coverage
planning methods. Some methods either simplify the inspection structure or the planning space via

* Corresponding author. E-mail: kalexis@unr.edu
E-mails: andreas.bircher@mavt.ethz.ch, ulrich.schwesinger@mavt.ethz.ch, sammy.omari@mavt.ethz.ch,
michael. burri@mavt.ethz.ch, rsiegwart@ethz.ch

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Apr 2016 IP address: 134.197.40.217

2 An incremental sampling-based approach to inspection planning

cell decomposition7, 8 or grid-based schemes.9 More versatile approaches that can handle arbitrary 3D
structures divide the global inspection path planning problem into two NP-hard subproblems, namely
the art-gallery problem (AGP)10 and the traveling salesman problem (TSP).11 Given a visibility model,
an AGP solver finds the minimal set of observation points that the robot has to visit to guarantee
full coverage and subsequently a TSP solver computes the shortest route among them. The authors
in refs.[3, 12–14] present advanced methods that follow the separated approach. Despite their notable
performance, such decoupled approaches suffer from specific limitations. First of all, they are unable
to guarantee feasibility of the exact solution in case of non-holonomic constraints and cluttered
environments since the points generated by the AGP solver might turn out to be unreachable from
other observation points on the set. Moreover, even when a feasible path that ensures full coverage
is computed, its optimality is in general not ensured due to the decoupled two-step optimization.
This is because the AGP solver ignores the resulting cost of connecting the selected points. In order
to alleviate these limitations in the inspection planning for complex 3D structures, new algorithms
that do not separate the problem into the AGP and TSP but rather aim to compute the observation
points and the path simultaneously have to be proposed. Among the first, the work in ref. [15] made
a significant step towards this direction. However, its graph expansion based on sampling in the
whole control space followed by forward simulations does support multiple vehicle configurations
but comes at the inherent cost of computation time. Since many systems relevant to inspection (e.g.
aerial robots with rotorcraft configurations) feature an explicit Boundary Value Solver (BVS), one can
take advantage of recent results for point-to-point path planning like PRM∗ or RRT∗16 and design a
fast algorithm that benefits from this fact. Following a rather hybrid approach, previous contribution of
the authors aimed to make a step towards iteratively optimized (but not guaranteed optimal) solutions
that retain a low computational load.4, 5 Ideally, one would desire to be able to utilize an inspection
solver that can provide results with guaranteed (and if possible optimal) quality, at a computational
load that allows its flexible utilization for problems of reasonable and realistic scale and complexity.
Essentially, this calls for algorithms that encompass the capacity to approach the optimal solution,
while at the same time being characterized by the property of computing first solutions extremely
fast, and subsequently having the capacity to iteratively improve them.

Within this work, a new approach for full coverage, optimal inspection path planning, called
RRTOT is proposed. For systems with a BVS, it guarantees to find inspection paths that give
full coverage while, in the limit case of infinite iterations, it approaches the optimal solution. The
RRTOT does not separate the problem into the AGP and TSP but rather employs a sampling-based
motion-planning paradigm that computes and optimizes coverage solutions. Due to the nature of the
inspection problem and in order to approach it in a unified way, a novel scheme is employed that
grows a meta–tree of subtrees where each one of them expands through the whole configuration
space. Algorithms using multiple trees are known from point-to-point path planning17–19 to solve
problems of parallelization, narrow passages or multi-goal path planning. However, to the best of
our knowledge, it is the first time that such a meta-tree/subtree structure is employed to unify
the optimization for good observation points and short paths for the coverage problem. While this
structure gets incrementally built, admissible paths that provide full coverage are found. At the same
time, the BVS enables fast tree-based optimization of existing paths which also reduces the time
to high-quality solutions compared to ref. [15] for all these cases that a BVS is available. Vehicle
limitations such as non-holonomic constraints are enforced by the use of the BVS and the resulting
algorithm can be applied to all systems for which such a BVS exists.

The RRTOT algorithm is evaluated in both simulation and experimental studies for holonomic as
well as non-holonomic robotic systems. For the experimental evaluation, the Micro Aerial Vehicle
(MAV) platform shown in Fig. 1 is utilized and equipped with a vision sensor. Complying with
the model of the onboard sensor, 3D inspection paths are computed and provided as reference
to the MAV flight control unit. The completeness of the inspection results is evaluated using
3D reconstruction algorithms . A video of one of the recorded experiments can be found online
at https://youtu.be/e7ljyDM9h8o. In all cases, the RRTOT algorithm presents satisfactory
performance and computes fast and full coverage results that indicate its potential as a planner for
structural inspection. Overall, the proposed algorithm employs a novel iterative strategy to approach
the optimal full coverage solution while guaranteeing collision-free navigation and respecting
vehicle constraints and sensor limitations. This approach is in contrast with the typically employed
methodology of splitting the inspection path planning problem into that of minimal set of viewpoints
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Fig. 1. Instant of the RRTOT inspection path execution and derived 3D model.

computation and subsequent tour computation and path optimization. Thorough evaluation studies
illustrate that such an approach not only is conceptually valuable due to its capacity to converge to
the optimal solution but also practically applicable.

The remainder of this paper is structured as follows. In Section 2, the inspection problem is defined
followed by the description of the proposed approach in Section 3. In Section 4, the feasibility and
optimality properties of the solution are analyzed. Evaluation studies are presented in Section 5, while
conclusions are drawn in Section 6.

2. Problem Definition
Consider a bounded δ-dimensional Euclidean space X ⊂ Rδ (δ = 2 or 3) consisting of the obstacle
regions Xobs ⊂ X and the resulting free space Xf ree = X \ Xobs . Similarly, �f ree is the free
configuration space, that can be augmented with system specific states. Further, there exists a set
of manifolds M ⊂ X to be inspected. The system dynamics of the inspecting vehicle have the form
ξi+1 = f (ξi, ui), where ξ is the configuration vector, u is the input and the initial condition is ξ0 = ξinit .
Paths are defined as σ : R → ξ . Additionally, a visibility model is assumed, that defines the area
V(ξ ) ⊆ X that can be inspected from configuration ξ . If a manifold lies completely inside V(ξ ), it is
called visible from ξ . The inspection path planning problem consists of the triplet (�f ree, ξinit , M).
Subsequently, the definitions of a feasible and an optimal inspection path planning problem are given
following a terminology similar to the one used in ref. [16].

Problem 1 (Feasible Inspection Path Planning). Let the set of manifolds M ⊂ X be the area
to be inspected. Further, Ai ⊆ M , ∀i ∈ [1, N ], with N ∈ N+ and

⋃
i=[1,2,...N] Ai = M . Given an

inspection path planning problem (�f ree, ξinit , M), find an admissible path σ (s), s ∈ [0, 1] such that
σ (0) = ξinit and ∀i ∈ [1, N]∃si such that σ (si) is a configuration from which Ai is visible. If such a
path exists, the problem is feasible.

Problem 2 (Optimal Inspection Path Planning). Let � be the set of all admissible paths. Given
a feasible inspection path planning problem (�f ree, ξinit , M) and a cost function c : � → R≥0, find
an admissible path σ ∗ such that c(σ ∗) = minσ∈�c(σ ).

3. Proposed Approach
A characteristic difference of point-to-point path planning and inspection (coverage) path planning
is that in the latter, once a specific subset of the structure has been inspected, paths may turn towards
a new target and follow this new general direction that can even be the same way back. Reflecting
this fact and in order to make use of recent results for point-to-point path planning that allow rapid
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Fig. 2. Starting from ξinit , the initial RRT∗ tree grows to cover �f ree. Of its vertices, the root configurations
for new subtrees are randomly sampled. The new roots become waypoints in the new subtrees. By iteratively
sampling new waypoints from existing RRT∗ trees, a TOT grows to find arbitrary complex paths.

exploration of the configuration space, our approach proposes a division of inspection paths into
segments which follow a certain direction, that may change when switching to a new segment. From
potential switching points, called waypoints, several path segments may branch. The resulting directed
graph has a tree structure, which allows extracting solutions easily. On a lower level, each waypoint
is a root of a RRT∗ tree, called subtree. Such a subtree spans the whole free configuration space. The
end points of the next path segments are chosen from its vertices, effectively resulting in the choice
of a new direction and distance to travel. This meta-tree, called tree of trees (TOT), is constructed
randomly and incrementally, as outlined in Algorithm 1 and the according function descriptions. A
key feature of the proposed algorithm is the optimization of existing paths (Algorithm 1, lines 9 and
12) while the TOT is constructed. Aforementioned structure allows for local cost optimization in the
subtrees, while searching for full visibility paths can be mostly performed on the level of the TOT.

More formally, the TOT consists of its subtrees S ∈ S, S := {WS, VS, ES} (S represens the set
of subtrees), consisting of waypoints w ∈ WS , vertices x ∈ VS and edges e ∈ ES . Each vertex x is
annotated with a configuration of the vehicle ξ , a cost and a set I ⊆ M that is the set of the already
inspected areas. It is the union of the visible areas along the path I (σ (t)) = ⋃

s=[0,t] V(σ (s)) ∩ M . To
construct these vertices and edges, the algorithm employs the RRT∗ method16 that grows the subtrees
in NRRT ∗ iterations. Every subtree possesses its own RRT∗ planner that has no knowledge of the
other subtrees. A new waypoint is chosen from the set of vertices of its respective parent subtree, to
which it will be connected. This effectively maintains a global tree structure as shown in Fig. 2. To
eventually achieve full coverage, the depth of the TOT grows with increasing iterations to find more
complex paths that give higher visibility.

The annotation of vertices with the set of the already inspected part of the structure I enables the
extraction of actual solutions. Every time a vertex reaches full visibility (I = M) and the cost is lower
than the best cost so far, the path to this vertex is the new best path so far σ̂ . The latest best path is
available as the output of the algorithm at any time.

Once a first solution is found, more effort is dedicated into improving existing solutions. As
shown in Algorithm 1, at the end of every TOT-iteration, every subtree’s RRT∗ planner is iterated
for Noptimize times. In order not to destroy existing admissible paths, the RRT∗ rewiring criterion has
to be adapted: a vertex is only rewired, if besides decreasing the cost it does not lose any visibility,
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that is I ⊆ I ′, where I is the original and I ′ the new visibility. Additionally, the waypoint positions
are also optimized in a rewiring step as shown in Algorithm 2. In this step, subtrees may accumulate
multiple waypoints that are roots of the same subtree, that is then actually a forest (set of disjoint
trees). In the optimization’s rewiring step, two trees in the forest may get reconnected, effectively
removing a root. Consequently, the waypoint that previously was this root is also removed.

3.1. Subroutines
The role of the employed functions within Algorithms 1 and 2 is briefly explained below:
NewSubtree(ξ, NRRT ∗): A standard RRT∗ tree with NRRT ∗ iterations is grown, starting at ξ as root.
If a vertex gets full visibility, I = M and has lower cost from root (CFR()) than the best cost c(σ̂ ),
the path to the vertex is the new global best path σ̂ . The output is this new subtree S.
ExpandSubtree(S): This function samples a vertex at random from VS to use its configuration to
initialize a new subtree (NewSubtree()). The same vertex can only be sampled once.
OptimizeSubtree(S, Noptimize): This routine iterates the RRT∗ planner of the subtree S for Noptimize

iterations. The condition in the rewiring step is augmented with the requirement, that the near vertices
must not lose visibility.
Near(S, x): The output of this function is the set of all vertices in VS that are within a distance d

of x according to some distance metric using the vertices configurations. This distance d scales with
log(n)

n
, where n is the number of vertices in VS . The used distance threshold is the same as for the

RRT∗ Near() function which is detailed in ref. [16].

Algorithm 1: This algorithm presents the body of the RRTOT inspection strategy. It iteratively
builds the TOT and as soon as a first solution is found, optimizes existing paths at the end of every
iteration. The functions NewSubtree, OptimizeSubtree and RewireWaypoint update the globally best
solution σ̂ .

1: S ← Sinit ← NewSubtree(ξinit , NRRT ∗)
2: NTOT ← 0
3: while execute do
4: for all S ∈ S do
5: S ← S ∪ ExpandSubtree(S)
6: end for
7: if first admissible path found then
8: for all S ∈ S do
9: OptimizeSubtree(S, Noptimize)

10: end for
11: for all S ∈ S \ Sinit do
12: RewireWaypoint(S)
13: end for
14: end if
15: NTOT ← NTOT + 1
16: end while
17: return best admissible path σ̂

ObstacleFree(xi, xj ): This function returns true, if the path from ξxi
of xi to ξxj

of xj lies entirely in
�f ree. The path is subject to the encoded vehicle constraints.
CFR(x): The CFR function returns the cost of moving from ξinit to ξx of x. The path considered for
the cost calculation runs along the edges of the TOT and its subtrees.
VFR(x): The Visibility From Root (VFR) function returns the union of the visibility along the edges
of the TOT and its subtrees from ξinit to ξx , the configuration of x, which corresponds to I of x.
Cost(xi, xj ): The cost of moving (typically time-to-travel) from one vertex xi to another, xj is
returned. The connecting path is subject to the vertices’ configurations ξi and ξj and the system
constraints.
Visibility(xi, xj ): The function returns the set of visible manifolds when moving from xi to xj ,⋃

s=[0,1] V(σ (s)) ∩ M , with σ (0) = ξi , σ (1) = ξj , where ξi, ξj are the configurations corresponding

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Apr 2016 IP address: 134.197.40.217

6 An incremental sampling-based approach to inspection planning

to vertices xi, xj respectively. Explicit solutions for the computation may exist for some systems,
otherwise discrete sampling of the configurations along the path can be used as an approximation.
Parent(x): Returns the parent vertex of x. Note that this may be part of a different subtree.

Algorithm 2 RewireWaypoint(S): This algorithm presents the routine, that performs a rewiring step
for the waypoints. It improves the paths in these regions, which are not affected by the optimization
of the OptimizeSubtree function. It is highlighted that a check that confirms weather rewiring of the
xchild with xnear would result in a lower cost compared to the current cost from root, while none of
the VFR is lost (but could potentially be complemented by additional visibility) is performed. Only
if this is the case and the edge is collision free, then the rewiring step is performed.

1: Vchildren ← Get child vertices of all waypoints WS

2: for all xchild ∈ Vchildren do
3: Sparent ← Get parent subtree of S;
4: Vnear ← Near(Sparent , xchild );
5: for all xnear ∈ Vnear do
6: if ObstacleFree(xnear , xchild ) & CFR(xchild ) ≥ CFR(xnear ) + Cost(xnear , xchild )

[4] & VFR(xchild ) ⊆ VFR(xnear ) ∪ Visibility(xnear , xchild ) then
7: WS ← WS ∪ {xchild};
8: xparent ← Parent(xchild );
9: ES ← ES \ {(xparent , xchild )};

10: ES ← ES ∪ {(xnear , xchild )};
11: VFR(xchild ) ←VFR(xnear ) ∪ Visibility(xnear , xchild );
12: if VFR(xchild ) = M & c(σ̂ ) > CFR(xchild )
13: σ̂ ← GetPath(xchild );
14: end if
15: end if
16: end for
17: end for

GetPath(x): This function reconstructs the path along the edges of the TOT and its subtrees from
ξinit to ξx , the configuration of x. This path σ is returned.

3.2. Parameters
The proposed algorithm employs a small set of tuning parameters, an aspect particularly important
for its straightforward utilization in real-life operations. These are briefly defined below:

NRRT∗ : Defines the number of iterations on the level of the RRT∗ planner in the subtrees. It is
relevant for the initial computation of the tree. A high number generally results in a slower first
solution with a better quality, while a lower number of iterations increases the chance of a fast first
solution. In either way, it should be chosen high enough to cover the whole �f ree.
Noptimize: Defines the number of iterations on the subtree-level for the optimization step (Algorithm
1, line 9). Typically, smaller values than NRRT∗ are used.

4. Analysis
This section deals with the formal analysis of the full coverage feasibility and inspection path
optimality characteristics of the proposed approach. Within this analysis, specific assumptions are
made and firstly that the RRTOT uses RRT∗ planners without limitation of the edge length, thus
connecting with a newly sampled vertex exactly. In addition, several assumptions about the problem
setup have to be made for the analysis but also for the algorithm. Most importantly, the requirements
for the RRT∗ algorithm16 have to be fulfilled, namely the continuity and additivity of the cost function.
In addition, the following assumptions are made:

Assumption 1 (Uniform Sampling). The sampling procedure is such that the samples are drawn
from an absolutely continuous and uniform distribution on �f ree.
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Assumption 2 (Initial RRT∗ Iterations). It is assumed, that the number of initial iterations NRRT ∗ is
not small, such that samples in regions that cannot be connected directly to root because of obstacles
can be connected via previously sampled vertices and have a probability to exist after NRRT ∗ iterations
that is arbitrarily close to the obstacle free case. In addition, the largeness of NRRT ∗ is such, that when
sampling new waypoints from the vertices, the samples can be assumed independent.

Assumption 3 (Inspectability). Each piece of inspection structure {A1, A2, . . . AN } has a nonempty
open area B(Ai) ⊆ �f ree, called inspectability area, from which it can be inspected. That is
μ(B(Ai)) > 0, where μ(�) denotes the Lebesgue-measure.

The aforementioned strong assumptions are necessary for the formal proofs that follow. It is
however worth mentioning, that as the experimental sections will show, the algorithm behaves in a
very efficient way even when aspects of these assumptions cannot easily be proven to hold in an exact
sense for the experimental data, the limitations of the computational system and the constraints of
the vision sensor.

4.1. Feasibility of the algorithm
Subsequently, we present the proof, that the RRTOT algorithm finds an admissible path with a
probability that asymptotically converges to 1 as NRRT ∗ → ∞. In a first step, it is shown, that
long enough paths are found and afterwards a lower bound for the probability to find a solution is
established, that converges to 1 as the number of waypoints in a path increases.

Theorem 1 (Existence of Collision-free Long Paths). As the number of iterations NT OT → ∞,
so does the number of waypoints r in the longest sequence of consecutive waypoints P for a feasible
problem.

Proof. As the number of iterations NT OT → ∞, the root waypoint w1(ξinit ) has infinite
children waypoints, since in every iteration one is added. For a feasible problem, in each iteration
NT OT the probability of sampling a configuration ξ → w2 that, immediately or later, results in
collision is pNT OT

< 1 and the probability of not finding a collision-free w2 decays to zero as
NT OT → ∞,

∏∞
i=1 pi = 0. The same holds for any waypoints wk and wk+1, k ∈ N+. From r > k

follows r → ∞. �

Definition 1 ((α, β)-expansiveness20). Let R(p) and Rl(p) be the reachable set and the locally
reachable set that is reachable in one expand step, respectively. The reachability of a set Q ⊂ �f ree is
R(Q) = ⋃

p∈Q R(p) and the local reachabilty of Q is Rl(Q) = ⋃
p∈Q Rl(p). Let β be a constant in

(0, 1], then the β-lookout of the set Q is defined as β-LOOKOUT(Q) = {p ∈ Q | μ(Rl(p) \ Q) ≥
βμ(R(Q) \ Q)}. Let α be a constant in (0, 1]. The free space �f ree is (α, β)-expansive if for every
point p ∈ �f ree and every subset Q ⊂ R(p), it holds that μ(β-LOOKOUT(Q)) ≥ αμ(Q).

In the RRTOT algorithm, a new waypoint can be sampled anywhere in �f ree without limitations
by Assumption 2. Therefore, the (local) reachability of the system is always the whole free space
�f ree. Thus, for the RRTOT algorithm the free space is (α, β)-expansive, in particular α = β = 1.

Theorem 2 (ref. [20]). Let �f ree be (α, β)-expansive, gi > 0 be the volume of the inspectability
area B(Ai) and γi be a constant in (0, 1]. A sequence P of r waypoints contains a waypoint in B(Ai)
with probability at least 1 − γi , if

r ≥ (ki/α)ln(2ki/γi) + (2/gi)ln(2/γi) = rmin,i , (1)

where ki = (1/β)ln(2/gi).

The main idea for the proof of Theorem 220 is to calculate the probabilistic overlap of the
inspectability area with the local reachability set of the sequence P . This gives the probability to
sample a waypoint in the next iteration that lies inside B(Ai). The expression in Eq. (1) gives the
bound on that probability. This is extendable to multiple inspectability areas that are visited in a row.
Doing so provides the result required.

Corollary 1 (to Theorem 2). A sequence P of r waypoints contains a waypoint in each B(Ai),
∀i ∈ {1, 2, . . . N} with probability at least

∏N
i=1(1 − γi) if r ≥ ∑N

i=1 rmin,i . Moreover, if the number
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of iterations NT OT → ∞, then r → ∞ as shown in Theorem 1. Suppose P is partitioned such
that rmin,i = rmin,j , i �= j and the length of the subsequences goes to infinity as well. All γi

decay to zero exponentially fast and an admissible path for problem 1 is found almost surely,
that is limr→∞

∏N
i=1(1 − γi) = 1. Therefore, RRTOT finds an admissible path with probability that

converges to 1.

The key parts for showing feasibility of the algorithm were the relation of the lower bound of
the probability to find a solution with the length of a sequence given by Theorem 2. Theorem 1
guarantees, that long enough sequences will actually be generated for the probability to converge to
1. The proof of finding full coverage solutions corresponds to the most fundamental property of the
proposed algorithm.

4.2. Asymptotic optimality
Asymptotic optimality is a particularly challenging property for inspection path planning algorithms.
Within this section, it is shown that a baseline version of the RRTOT algorithm turns out to express
such a critical property. More specifically, the algorithm considered for the analysis of asymptotic
optimality excludes the waypoint rewiring function (Algorithm 1, line 12) and is called the basic-
RRTOT. Experience gathered in simulation and experiments showed that the waypoint rewiring
process only benefits the algorithm evolution towards good solutions due to its intrinsic criterion
(Algorithm 2, line 6). In general, solutions of the basic-RRTOT are observed to be therefore equal
or worse than the real RRTOT’s solutions that has been executed for the same amount of iterations.
However, formal analysis of asymptotic optimality is only provided for the basic-RROT, a structurally
simplified algorithm that can be used for theoretical comparisons and evaluation of other methods.
In particular and under specific assumptions, it is shown that in the limit of NT OT → ∞, the set of
admissible paths found by the basic-RRTOT are probabilistically equivalent to the solutions found
by an idealized algorithm that iteratively executes an ideal-Expand function (Algorithm 3) on a tree
consisting of waypoints and edges. While expanding, the algorithm keeps track of the inspected part of
the structure for each waypoint. For this algorithm, the convergence to the optimal solution is proven
in ref. [15]. This proof shows that the algorithm can sample a series of waypoints arbitrarily close to
the optimal path in the limit of infinite iterations. As the basic-RRTOT finds the same solutions also
one arbitrary close to the optimal will be among them. The necessary assumptions for the comparison
are:

Assumption 4 (ε-Inspectability). There exists a constant ε ∈ R+ and a suboptimal path σ ′(s),
s ∈ [0, 1], that follows the optimal path σ ∗ arbitrarily close, and the respective costs are arbitrarily
close, such that for every Ai ∃si with Bσ ′(si ),ε ⊆ B(Ai), where Bσ ′(si ),ε is the ε-ball centered at σ ′(si).

Assumption 4 rules out cases, where convergence towards the optimum is impossible, because no
path close to the optimal solution is admissible.

The modification of the RRT∗ rewire criterion for the optimization might in some cases prevent
the RRT∗ planners from converging to optimal paths within the subtrees. Whether this is the case or
not depends on the order of sampling of the vertices but not on the set of vertices. The following
assumption is therefore reasonable and necessary for the analysis of convergence to hold:

Assumption 5 (Non-optimality of Modified RRT∗). Let ξ ∈ �f ree be a configuration where an
RRT∗ tree is initialized. When choosing a new waypoint w among its vertices, there is a non-zero
probability, independent of its configuration ξw, that the connection of ξ to ξw will converge to the
optimal as the RRT∗ iterations go to infinity.

The following analysis considers only the subset of optimal subtrees So ⊆ S, whose waypoints
are optimally connected according to assumption 5 and are not disjoint. By Assumption 5, So grows
infinitely deep and wide, as NT OT → ∞.

Theorem 3 (Asymptotic optimality of RRTOT). Under assumption 5, the solutions of the basic-
RRTOT algorithm are the same as the solutions of the algorithm with the ideal-expand algorithm
proven to lead in optimal solutions as shown in ref. [15].

Proof. This proof shows that the steps performed by idealexpand are equivalent to the steps
performed by basic-RRTOT, from which follows that the solutions will be probabilistically the same.
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Algorithm 3: Ideal-Expand(W)15

1: Sample a waypoint w′ uniformly at random from Rl(W).
2: Sample a waypoint w that can reach w′.
3: Compute a control input u to move from w to w′.
4: return w′, w, T rajectory(w, w′, u), u

Since Rl(w) = �f ree, ∀w ∈ W = WS1 ∪ WS2 ∪ . . . , the order of step 1 and step 2 in Algorithm 3 is
irrelevant, because every existing waypoint w can be connected to any newly sampled w′. Step 2 in
the ideal-expand is equivalent to choosing the subtree to expand in the basic-RRTOT. Ideal-expand
assumes sampling from the waypoints uniformly at random over �f ree. Again since Rl(w) = �f ree,
the waypoints are uniformly random and independent samples. In one iteration, the set of all waypoints
is the set to be expanded, thus guaranteeing uniform randomness and independence. On the other
hand, the vertices in an RRT∗ tree are also uniformly randomly distributed on �f ree and independent.
Therefore, sampling new waypoints from the large set of vertices VS at random is equivalent to step
1 in ideal-expand. Step 3 is performed by the RRT∗ in the presented algorithm, that plans the path
in the configuration space and under Assumption 5 for the OptimizeSubtree() function ensures the
asymptotic convergence of the edges of the TOT to the optimal. From the equivalence of the two
algorithms follows the equivalence of their solutions in the limit of the number of iterations going to
infinity and hence the same optimality properties. �

4.3. RRTOT fast inspection solutions
The complete RRTOT algorithm (including the waypoint rewiring step) relies on specific properties
and steps to provide fast inspection solutions. This section deals with an overview of the key
mechanisms that enable the fast computation of full coverage inspection solutions. First of all,
the (1, 1) expansiveness of the algorithm on �f ree easily makes up for the computational burden
of generating RRT∗ trees to connect the waypoints. Especially when planning with obstacles, it is
beneficial to be able to plan with connections around them, the cost of which decreases by keeping
iterating the RRT∗ planners in the OptimizeSubtree() function. Furthermore, with the rewiring of
the waypoints (RewireWaypoints()) optimization along the whole path is achieved. The waypoints
are no longer fixed points on the path that may be suboptimal and therefore would prevent the specific
path from converging to the optimal. Together with the fast expansion, these two functions, that
improve existing paths, result in an algorithm that finds first solutions quickly, while having the
tendency to optimize them. This is particularly useful for real-life operations, where a first path is
preferred to be available in short.

5. Case Studies
In order to thoroughly evaluate the capabilities of the proposed RRTOT algorithm, several simulation
and experimental studies were conducted. The results verify the functionality of the algorithm and
its capabilities to compute efficient inspection paths in both 2D and 3D environments for holonomic
or non-holonomic vehicles. In all cases, the objective is to provide full visibility while minimizing
the distance. All calculations were performed on a computer with a 3.3 GHz processor running
Ubuntu 12.04 and using a single-thread C++ implementation.

5.1. 2D simulation studies
In a 2D study, the RRTOT algorithm is evaluated in indirect comparison to the performance of the
algorithm15 using an identical simulation setup as the one employed by the authors of this work. The
space configuration of this simulation setup is depicted in Figs. 3 and 4. As shown, it consists of
five rectangles the edges of which have to be completely inspected while the overall distance of the
inspection path gets minimized. Two cases are investigated, one considering a holonomic vehicle,
while a non-holonomic vehicle with a minimum turning radius of 2 units and non-negative velocity
is employed for the second case. For the holonomic case, the configuration vector is ξv,H = [x, y]T

with initial conditions ξ
v,H
0 = [45, 0]T , while for the non-holonomic case, the configuration vector

is augmented with the vehicle’s heading angle (ξv,NH = [x, y, ψ]T and ξ
v,NH
0 = [45, 0, π/2]T ).
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Table I. RRTOT Performance analysis.

Holonomic 1–st sol. c(σ̂ ) < 185 units c(σ̂ ) < 169 units

t̄H 0.25 s 89 s 336 s
std(t̄)H 0.27 s 189 s 247 s

Non-holonomic 1–st sol. c(σ̂ ) < 185 units c(σ̂ ) < 177 units
t̄NH 3.3 s 559 s 28 min
std(t̄)NH 2 s 795 s 29 min
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Fig. 3. A sample run of the RRTOT algorithm for the holonomic vehicle employing an omnidirectional sensor
with a limited range of 15 units as only constraint ensuring inspection quality. The first result is returned quickly.
The algorithm subsequently finds other paths belonging to different topologies. Figures 3c, 3d show, that a path
is optimized within a certain topology. (a) Cost 196.4 in 1.1 s. (b) Cost 174.6 in 49.8 s. (c) Cost 166.7 in 140.3 s.
(d) Cost 160.7 in 249.1 s.
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Fig. 4. A sample run of the RRTOT algorithm for the non-holonomic vehicle with a minimum turning radius
of 2 units. It employs an omnidirectional sensor with a limited range of 15 units as only constraint ensuring
inspection quality. The first result is returned quickly. The algorithm subsequently finds other paths belonging
to different topologies. Figures 4c, 4d show, that a path is optimized within a certain topology. (a) Cost 230.6 in
2.8 s. (b) Cost 182.1 in 55.5 s. (c) Cost 176.4 in 305 s. (d) Cost 167.5 in 673 s.

Regarding the visibility model, both vehicles are considered to be equipped with an omnidirectional
sensor with a range of 15 units, unless areas are occluded by parts of the structure.

Figures 3 and 4 show the computed paths in sample runs for the holonomic and non-holonomic
case respectively. Within them, Figs. 3a and 4a show the first fast initial full coverage paths. In the
course of computation, the algorithm comes up with better solutions, belonging to different topologies
as shown in Figs. 3b, 3c and 4b, 4c. Figures 3d and 4d show that the paths are optimized within a
certain topology to find solutions of decreasing cost while retaining full visibility.

To gain a statistical insight on the algorithm performance characteristics, the aforementioned
process is repeated in total 20 times. The results are summarized in Table I, while the cost plots
showing the convergence are depicted in Fig. 5. For further evaluation, the algorithm in ref. [15]
finds, for the identical inspection problem setup, a first solution to the same non-holonomic problem
in 12.87 s (standard deviation of 25.4 s) and high quality solutions with lengths of 190 and 185 units
after 44 and 73 min respectively (with standard deviations of 53 and 85 min). It is highlighted once
more that this comparison is indirect as the algorithm in ref. [15] can handle vehicle configurations
that do not have a BVS and therefore is more versatile regarding the robot configuration. Nonetheless,
it illustrates the good performance characteristics of RRTOT for all these cases of vehicles that a
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Fig. 5. Convergence curves of the 2D case study. Both curves show a fast first solution with subsequent steep
convergence. For longer runtimes, the curve still exhibits decreasing cost.

BVS is available. As a very wide set of robots such as multirotor MAVs, most of the remotely
operated underwater vehicles and other vastly used vehicle configurations are considered to have
BVS describing their motion characteristics, RRTOT is believed to have a great potential for real-life
applications.

5.2. 3D experimental studies
The experimental studies were conducted using an AscTec Firefly hexarotor MAV equipped with
an Intel core duo computer and the visual–inertial sensor (VI-sensor) developed by the autonomous
systems lab and Skybotix AG. The VIsensor integrates two HDR global shutter cameras (Aptina
MT9V034) and an analog devices ADIS16448 IMU in a tightly aligned and synchronized way
using an ArtixT M–7 FPGA, a Xilinx Zynq 7020 SoC module and an ATOM CPU running Linux.
This integrated sensor system runs advanced image processing algorithms, provides complete pose
estimates and builds a 3D map of the environment. An overview of the experimental platform is
indicated in Fig. 6, while detailed information on the platform, the onboard controllers, the perception
modules and the state estimation strategies are found in refs. [2,21–23]. For the experiments presented,
a Vicon motion capture system provided exact position estimates and the Robot Operating System
(ROS) was utilized as the middleware to allow solid interfacing of the RRTOT algorithm with the
MAV. Precomputed paths are loaded to the MAV to be executed by the autopilot. As the recorded
flight response is expected to naturally present a tracking error, for all the path computations the
sensor FoV was considered slightly reduced compared to its actual value in order to provide some
necessary robustness and avoid cases of not inspecting a subset of the desired structure. In general, as
the proposed algorithm solves the problem of explicit inspection path planning, it naturally cannot per
se with uncertainties regarding the model structure or inaccuracies of the sensor and vehicle model.
To provide robustness, the main considerations of assuming a slightly reduced FoV and possibly
more constrained non-holonomic constraints or slower maximum yaw rates are proposed.

The experimental setup refers to an area of 4 m × 4.5 m where multiple carton boxes are deployed
and arranged as depicted in Fig. 7. Within this scenario, all non-overlapping surfaces of the boxes
have to be inspected with minimal distance taking into account the limitations of the camera system
(a single camera model is considered). Consequently, the visibility model is adapted to match the
properties of the real sensor and therefore the field of view is angularly constrained on all four
sides. From the nominal field of view a margin is deducted on all sides to account for errors of the
inspection manifold model and the tracking of the path. A minimum and maximum distance to the
object under inspection is also enquired to ensure good quality of inspection results. The orientation
of the camera in the xy plane is an additional system state. Finally, although the employed vehicle can
fly holonomic trajectories, the experiment is performed under both holonomic and non-holonomic
considerations in order to evaluate the capabilities of the proposed inspection path planner. The
encoded non-holonomic constraints are a minimum turning radius of rmin = 0.25 m on the xy plane
and first-order differentiability of the height. Such a setup is suitable for a multirotor MAV. With a
bound on the height derivative and a larger radius constraint, it could also be adapted to plan paths
for fixed-wing airplanes with a camera, movable around the z-axis. Figures 7a and 7b depict the
offline computed paths for the holonomic and the non-holonomic case along with the experimentally
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Fig. 6. Block diagram of the main algorithmical components of the flight control unit of the Firefly hexarotor,
photos of the vehicle, the VI-Sensor and the high-level core duo processor. The lowlevel processor runs the
attitude control of the vehicle which is commanded by the position controller running the high-level processor.
The high-level unit also executes the state estimation algorithms and iterfaces the VICON pose feeds.

Fig. 7. Inspection paths computed by the RRTOT planner (black) and plots of the recorded vehicle response
(red). The considered vehicle employs a vision sensor with a limited field of view and constraints on the sensing
range for both minimal and maximal distance. The left plot corresponds to the holonomic case while the right
plot presents the results when non-holonomic constraints are considered. These are a first order differentiability
constraint on the height and a minimum turning radius of 0.25 m in the xy plane. The path length is 9.4 m and
13.1 m for the holonomic and non-holonomic cases respectively. (a) Holonomic case. (b) Non-holonomic case.

recorded MAV paths. Regarding the computation time, first feasible solutions are found within a few
minutes, while finding a well optimized path takes in general significantly longer.

The presented inspection paths ensure full coverage of the desired 3D structure. This theoretical
result was experimentally evaluated and validated by using the feeds of the onboard vision system
and executing 3D reconstruction algorithms. Two reconstruction strategies were employed, namely
(a) that of the free online tool 123D Catch24 which uses images from only one of the onboard
cameras to conduct the reconstruction process using computer vision algorithms, and (b) a stereo
dense reconstruction pipeline that uses OctoMaps to represent the environment.25 The results are
shown in Fig. 8 and as can be seen complete reconstruction was achieved for both holonomic and
non-holonomic cases. Note that a recorded response of the last experiment can be found in the video
provided following this link: https://youtu.be/e7ljyDM9h8o.
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Fig. 8. 3D reconstruction results for the holonomic and non-holonomic paths using the offline 123D Catch tool
as well as an online dense reconstruction pipeline that combines stereo block matching techniques fused with
position information to derive a voxel-based representation. As shown, satisfactory reconstruction results are
derived for both types of paths.

6. Summary & Conclusions
A new sampling-based inspection planning algorithm was presented within this work. The algorithm,
the performance of which relies on a rewiring mechanism on the vertices of its tree structure, was
described, followed by analysis on its capability to find admissible full coverage solutions with
decreasing cost. The proposed RRTOT planner was evaluated in both simulation and experimental
cases. Good inspection paths were found considering both, a holonomic and a particular case of
non-holonomic vehicle with a turn radius limitation. The experimental case studies were conducted
employing a hexacopter miniature aerial vehicle and an onboard vision module used for inspection.
The derived experimental results and the corresponding 3D reconstructions of the inspected structures
indicate the high quality of the computed solutions. Future work includes adaptations and experiments
to plan for fixed-wing aircrafts as well as finding further heuristic concepts to speed up the computation
while maintaining the theoretical optimality guarantees. Furthermore, one could consider employing
the basic steps that are executed at each iteration of this algorithm and run them in an online fashion
with the aim to iteratively explore unmapped areas (using real-time sensor data). In such a case, the
goal would not be to guarantee global optimality but rather a locally optimized path to maximize the
expected information gain.

Acknowledgment
This work has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under the Grant Agreement No.644128, AEROWORKS.

References
1. E. Stumm, A. Breitenmoser, F. Pomerleau, C. Pradalier and R. Siegwart, “Tensor-voting-based navigation

for robotic inspection of 3d surfaces using lidar point clouds,” 31(12), 1465–1488 (2012).
2. M. Burri, J. Nikolic, C. Hurzeler, G. Caprari and R. Siegwart, “Aerial Service Robots for Visual Inspection

of Thermal Power Plant Boiler Systems,” Applied Robotics for the Power Industry, 2012 2nd International
Conference on Zurich, Switzerland (2012) pp. 70–75.

3. B. Englot and F. S. Hover, “Three-dimensional coverage planning for an underwater inspection robot,”
32(9–10), 1048–1073 (2013).

4. A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel and R. Siegwart, “Structural Inspection
Path Planning Via Iterative Viewpoint Resampling with Application to Aerial Robotics,” IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, USA (May 2015) pp. 6423–6430. [Online].
Available: https://github.com/ethz-asl/StructuralInspectionPlanner

5. A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel and R. Siegwart, “Three-
dimensional coverage path planning via viewpoint resampling and tour optimization for aerial robots,”
Autonomous Robots, Springer US, 1–25 (2015). DOI: 10.1007/s10514-015-9517-1, ISSN: 1573–7527.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Apr 2016 IP address: 134.197.40.217

14 An incremental sampling-based approach to inspection planning

6. E. Galceran and M. Carreras, Marc, “A survey on coverage path planning for robotics,” Robot. Auton. Syst.
61(12), 1258–1276 (2013).

7. J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed representation approach,” Int. J.
Robot. Res. 10, 628–649 (1991).

8. H. Choset, “Coverage for robotics–a survey of recent results,” Ann. Math. Artif. Intell. 31(1–4), 113–126
(2001).

9. A. Zelinsky, R. A. Jarvis, J. Byrne and S. Yuta, “Planning Paths of Complete Coverage of an Unstructured
Environment by a Mobile Robot,” Proceedings of International Conference on Advanced Robotics vol. 13,
Tsukuba (1993) pp. 533–538.

10. J. Urrutia, “Art Gallery and Illumination Problems,” In: Handbook of Computational Geometry, Instituto
de Mathematicas, Universidad Nacional Autonoma de Mexico: Mexico (2000) pp. 973–1027.

11. D. Shmoys, J. Lenstra, A. Kan and E. Lawler, The Traveling Salesman Problem. J. K. Lenstra, A. R.
Kan, E. L. Lawler, D. B. Shmoys, editors. The traveling salesman problem: a guided tour of combinatorial
optimization. John Wiley & Sons (1985).

12. B. Englot and F. S. Hover, “Sampling-Based Sweep Planning to Exploit Local Planarity in the Inspection
of Complex 3d Structures,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, Vilamoura (2012) pp. 4456–4463.

13. T. Danner and L. E. Kavraki, “Randomized planning for short inspection paths,” IEEE International
Conference in Robotics and Automation, 2000, Apr 24, Vol. 2, pp. 971–976, San Francisco, CA, USA.

14. P. S. Blaer and P. K. Allen, “View planning and automated data acquisition for three-dimensional modeling
of complex sites,” J. Field Robot. 26(11–12), 865–891.

15. G. Papadopoulos, H. Kurniawati and N. Patrikalakis, “Asymptotically Optimal Inspection Planning using
Systems with Differential Constraints,” Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Karlsruhe, Germany (2013) pp. 4126–4133.

16. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Robot. Res.
30(7), 846–894 (2011).

17. E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd and L. Kavraki, “Sampling-based roadmap of trees for
parallel motion planning,” IEEE Trans. Robot. 21(4), 597–608 (2005).

18. W. Wang, L. Yan, X. Xu and S. X. Yang, “An Adaptive Roadmap Guided Multi-RRTs Strategy for Single
Query Path Planning,” Proceedings of the 2010 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, Anchorage, AK, USA (2010) pp. 2871–2876.

19. D. Devaurs, T. Simeon, J. Cortés et al., “A Multi-Tree Extension of the Transition-Based RRT:
Application to Ordering-and-Pathfinding Problems in Continuous Cost Spaces,” Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA (2014)
pp. 2991–2996.

20. D. Hsu, R. Kindel, J. C. Latombe and S. Rock, “Randomized kinodynamic motion planning with
moving obstacles,” The International Journal of Robotics Research, 21(3), 233–255 (2002 March). doi:
10.1177/027836402320556421.

21. M. W. Achtelik, S. Lynen, M. Chli and R. Siegwart, “Inversion Based Direct Position Control and Trajectory
Following for Micro Aerial Vehicles,” IEEE/RSJ Conference on Intelligent Robots and Systems (IROS),
Tokyo, JP (2013) pp. 2933–2939.

22. J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale and R. Siegwart, “A Synchronized
Visual-Inertial Sensor System with FPGA Pre-Processing for Accurate Real-Time Slam,” Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA) IEEE, Hong Kong (2014) pp.
431–437.

23. Ascending Technologies GmbH, “http://www.asctec.de/”.
24. Autodesk Inc., “http://www.123dapp.com/catch”.
25. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss and W. Burgard, “OctoMap: An efficient probabilistic

3D mapping framework based on octrees,” Auton. Robots 34(3), 189–206 (2013).

http://journals.cambridge.org


Structural Inspection Path Planning via Iterative Viewpoint Resampling
with Application to Aerial Robotics
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Abstract— Within this paper, a new fast algorithm that
provides efficient solutions to the problem of inspection path
planning for complex 3D structures is presented. The algorithm
assumes a triangular mesh representation of the structure
and employs an alternating two–step optimization paradigm
to find good viewpoints that together provide full coverage
and a connecting path that has low cost. In every iteration,
the viewpoints are chosen such that the connection cost is
reduced and, subsequently, the tour is optimized. Vehicle and
sensor limitations are respected within both steps. Sample
implementations are provided for rotorcraft and fixed–wing un-
manned aerial systems. The resulting algorithm characteristics
are evaluated using simulation studies as well as multiple real–
world experimental test–cases with both vehicle types.

I. INTRODUCTION

The ongoing boom in utilizing mobile robots for real–
life applications sets new demands regarding their autonomy.
In the particularly interesting field of inspection operations,
aerial, maritime or ground robots are already utilized for
critical tasks such as infrastructure surveillance, damage
assessment or victim search. In such scenarios, the structure
to be inspected may be given as a 3D model (typically a
mesh from CAD software, Geographical Information System
data or civil engineering instrumentation) and robots are
employed either to derive an updated, possibly higher–
fidelity model, or scan for risks and hazards (e.g. cracks).

To facilitate autonomous inspection planning capabilities,
a robot must be equipped with algorithms that allow it to
quickly compute efficient paths that result in full coverage
of the structure to be inspected, while respecting any sensor
limitations and motion constraints that may apply. Such a
problem belongs to the general class of coverage planning
and –despite the interest of the community– its inherent
difficulties still limit the performance, efficiency and appli-
cability of the proposed solutions. Furthermore, so far, only
few works validated such algorithms in experimental studies.

Within this work, a novel fast iterative algorithm for
structural inspection is proposed. The new algorithm employs
an alternating two–step optimization paradigm to find good
viewpoints that together provide full coverage and lead to
a connecting path that is of low cost. In every iteration,
each viewpoint is chosen such as to reduce the cost–to–travel

This work has received funding from the European Union’s Horizon
2020 Research and Innovation Programme under the Grant Agreement
No.644128, AEROWORKS as well as by the FP7-framework Grant No.
285417, ICARUS.

1All authors are with the Autonomous Systems Lab at ETH
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Fig. 1: Indicative inspection 3D reconstruction results using the
proposed structural inspection planner and a rotorcraft as well as a
fixed–wing UAV equipped with camera sensors.

between itself and its neighbours (first step) and subsequently
the optimally connecting tour is recomputed (second step),
while vehicle constraints and sensor limitations are respected
in all phases. Extensive evaluation studies including 3D
reconstruction experiments using a rotorcraft (hexarotor) Un-
manned Aerial Vehicle (UAV), as well as a 5.6m wingspan
glider fixed–wing UAV (both shown in Figure 1) reveal the
high–performance properties of the algorithm in challenging
scenarios and subject to real vehicle and sensor constraints.
An open source implementation [17] as well as the point-
clouds resulting from the experiments [2] are provided for
further use and development by the comunity.

A short overview of the related work and how our ap-
proach contributes further is presented in Section II, followed
by the problem description in Section III. Afterwards, the
proposed approach is presented in Section IV, while compu-
tational analysis takes place in Section V. Finally, evaluation
test–cases in simulation and experiments are shown in Sec-
tion VI, followed by conclusions in section VII.

II. RELATED WORK

In the literature, many contributions have been made
towards addressing the challenges of coverage planning. Sys-
tem and environment allowing, the space may be represented
by a simplified discrete grid and paths can be computed
using wavefront algorithms [23], spanning trees [7] or neural
networks [16]. The work in [4] proposed a cellular decom-
position of the planning space, covering each free cell with a
sweeping pattern and an advanced algorithm following this
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concept was presented in [1]. Using a 2D planner, the authors
in [11] approximate a 3D structure using multiple 2D layers.

Aiming towards real 3D structural inspection, advanced
algorithms have recently been proposed. Within the most
recent contributions, those that employ a two–step optimiza-
tion scheme proved to be more versatile with respect to the
inspection scenario. In a first step, such algorithms compute
the minimal set of viewpoints that cover the whole structure
which corresponds to solving an Art Gallery Problem (AGP).
As a second step, the shortest connecting tour over all
these viewpoints has to be computed, which is the Traveling
Salesman Problem (TSP). Fast algorithms to approximately
solve these two NP–hard, but well studied problems, are
known, for example in [9, 18] for the AGP, and [5, 15]
for the TSP. A recent application of these concepts, that
allows some redundancy in the AGP such that it is able to
improve the path in a post–processing step, was presented
in [12]. This algorithm can deal with 3D scenarios and is
demonstrated in experiments using underwater vehicles for
ship hull inspection. Addressing the problem from a different
perspective, the work in [21] concentrates on deriving close–
to–optimal solutions at the inherently large cost of compu-
tational efficiency. A comprehensive survey of the existing
coverage path planning methods may be found in [8].

The proposed fast inspection path planner retains a two–
step optimization structure but contrary to trying to find
a minimal set of guards in the AGP it rather tries to
sample them such that the connecting path is short while
ensuring full coverage. This is driven by the idea that with a
continuously sensing sensor the number of viewpoints (and
if this is minimal or not) is not necessarily important but
mostly their configuration in space, which has to be such
that short and full coverage paths are provided. As a result,
this novel approach leads to full coverage paths that are of
low cost and are computed quickly.

III. PROBLEM DESCRIPTION

The problem of structural inspection path planning, as it
is considered in this paper, consists of a 3D structure to be
inspected, a system with its dynamics and constraints and
an integrated sensor, the limitations of which have to be
respected. The 3D structure to be inspected is represented
by a triangular mesh, embedded in a bounded environment
that may contain obstacle regions. The problem setup is to
be such that for each triangle in the mesh, there exists an
admissible viewpoint configuration – that is a viewpoint from
which the triangle is visible for a specific sensor model.
Then, for the given environment and with respect to the
operational constraints, a path for the system has to be found
that guarantees complete inspection of the 3D structure.
Quality measures for paths are situation specific, depending
on the system and mission objectives, e.g. time or distance.

As sample systems we consider a rotorcraft and a fixed–
wing UAV, both equipped with a visual camera with a fixed
orientation relative to the platform. Minor adaptations to the
proposed path–planner enable its use for other common robot
configurations such as underwater ROVs or wheeled robots.

IV. PROPOSED APPROACH

As the algorithm does not focus on minimizing the
number of viewpoints, the proposed approach selects one
(admissible) viewpoint for every triangle in the mesh of the
structure to be inspected. In order to compute viewpoints that
allow low–cost connections, an iterative resampling scheme
is employed. Between each resampling, the best path for
the current viewpoints is computed. The cost to connect to
the current neighbours on the tour provides a metric for
the quality of the viewpoint in the subsequent resampling.
The initial selection of viewpoints for the first iteration is
arbitrarily done such that full coverage is provided with
non–optimized viewpoints. A fast implementation of the
Lin-Kernighan-Helsgaun Heuristic (LKH) TSP solver [10]
is employed to compute the best tour, while the cost of
the interconnecting pieces of path is calculated by means
of a boundary value solver (BVS). Algorithm 1 presents an
overview of the proposed inspection planning procedure.

Algorithm 1 Inspection path planner

1: k ← 0
2: Sample initial viewpoint configurations
3: Compute cost matrix for the TSP solver (Section IV-A)
4: Solve the TSP problem to obtain initial tour
5: while running
6: Resample viewpoint configurations (Section IV-B)
7: Recompute the cost matrix (Section IV-A)
8: Recompute best tour Tbest using the LKH and update
9: best tour cost cbest if applicable

10: k ← k + 1
11: end while
12: return Tbest, cbest

In the following, the formulations of the path computation
and the viewpoint sampling for a rotorcraft UAV are given.
Subsequently in Section IV-C, extensions and adaptations to
enable planning for a fixed–wing UAV are discussed.

A. Path Computation and Cost Estimation

To find the best tour among the viewpoints, the TSP
solver requires a cost matrix containing the connection
cost of all pairs of viewpoints. The path generation and
its cost estimation relie on a two state BVS. The BVS
is either employed directly to connect the two viewpoints
or as a component in a local planner, in case the direct
connection is not feasible due to obstacles. In that case,
our implementation makes use of the RRT∗-planner [14]
to find a collision–free connection. The proposed model
for a rotorcraft UAV consists of position as well as yaw,
ξ = {x, y, z, ψ}. Roll and pitch angles are considered to be
near zero as slow maneuvering is desired to achieve increased
accuracy. The path from configuration ξ0 to ξ1 is given
by ξ(s) = sξ1 + (1 − s)ξ0, where s ∈ [0, 1]. The single
limitation considered is the speed limit. The translational
limit is denoted by vmax while the rotational speed is limited
by ψ̇max. Both values are small, such that the tracking of
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paths with corners is sufficiently accurate. The resulting
execution time is tex = max(d/vmax, ‖ψ1 − ψ0‖ /ψ̇max),
with d the Euclidean distance. The cost of a path segment
corresponds to the execution time tex.

B. Viewpoint Sampling

For every triangle in the mesh, one viewpoint has to
be sampled, the position and heading of which is deter-
mined sequentially in the proposed procedure while retaining
visibility of the corresponding triangle. First, the position
is optimized for distance to the neighbouring viewpoints
using a convex problem formulation and only then, the
heading is optimized. To guarantee a good result of this
multistep optimization process, the position solution must
be constrained such as to allow finding an orientation for
which the triangle is visible.

Specifically, the constraints on the position g = [x, y, z]
consist of the inspection sensor limitations of minimum in-
cidence angle, minimum and maximum range (dmin, dmax)
constraints (depicted in Figure 2a). They are formulated as
a set of planar constraints: (g − xi)Tni

(g − x1)T aN
−(g − x1)T aN

 �

 0
dmin

−dmax

 , i = {1, 2, 3} (1)

where xi are the corners of the mesh triangle, aN is the
normalized triangle normal and ni are the normals of the
separating hyperplanes for the incidence angle constraints as
shown in Figure 2a.

Further, the camera has a limited field of view (FoV) with
a certain horizontal and vertical opening and is mounted to
the system with a fixed pitch angle. The imposed constraint
on the sampling space resulting from the vertical camera
opening is not convex (a revoluted 2D-cone, the height of
which is depending on the relevant corners of the triangle
over the revolution). To approximate and convexify the
problem, the space is divided in NC equal convex pieces
according to Figure 2b. The optimum is computed for
every slice in order to find the globally best solution. The
constraints for piece j are derived as follows: Left and
right boundaries of the sampling space are the borders of
the revolution segment and the cone top and bottom are
represented by a single plane tangential to the centre of the
slice. Angular camera constraints in horizontal direction are
not encoded and instead dmin is chosen high enough to allow
full visibility of the triangle. This leaves some space for
variation in the sampling of the heading, where the horizontal
constraints are enforced. Specifically, these constraints are:

(g − xrellower)
Tncam

lower

(g − xrelupper)
Tncam

upper

(g −m)Tnright

(g −m)Tnleft

 �

000
0

 , (2)

where xrellower, x
rel
upper are the respective relevant corners of

the mesh triangle, m the middle of the triangle and ncamlower,
ncamupper, nright and nleft denote the normal of the respective
separating hyperplanes.

n1

n2

n3 aN

n+

g

x3
x1

x2
m

(a) Incidence angle constraints
on a triangular facet

ncamupper

ncamlower

1

2

3

. . .j

. . .

NC

nleft
nright

xrelupper

xrellower

(b) Camera constraints and con-
vexification

Fig. 2: a) The figure depicts the three main planar angle of incidence
constraints on all three sides of the triangle. For a finite number of
such constraints the incidence angle is only enforced approximately.
The red line (and n+) demarks a sample orientation for a possible
additional planar constraint at a corner. Minimum (green plane)
and maximum (red plane) distance constraints are similar planar
constraints on the sampling area. These constraints bound the
sampling space, where g can be chosen, on all sides (gray area).
b) The vertical camera angle constraints with the relevant corners
of the triangle in red are depicted in the upper part, while beneath
the partition of the space for convexification is depicted.

The optimization objective for the viewpoint sampling in
iteration k, in the case of a rotorcraft UAV, is to minimize the
sum of squared distances to the preceding viewpoint gk−1p ,
the subsequent viewpoint gk−1s and the current viewpoint in
the old tour gk−1. The former two parts potentially shorten
the tour by moving the viewpoints closer together, while the
latter limits the size of the improvement step, as gk−1p and
gk−1s potentially move closer as well.

The resulting convex optimization problem is given be-
low. Its structure as a Quadratic Program (QP) with linear
constraints allows the use of an efficient solver [6].

min
gk

(gk − gk−1
p )T (gk − gk−1

p ) + (3)

(gk − gk−1
s )T (gk − gk−1

s ) + (gk − gk−1)T (gk − gk−1)

s.t.



nT
1

nT
2

nT
3

aTN
−aTN
ncam T
lower

ncam T
upper

nT
right

nT
left


gk �



nT
1 x1
nT
2 x2
nT
3 x3

aTNx1 + dmin

−aTNx1 − dmax

ncam T
lower x

rel
lower

ncam T
upper x

rel
upper

nT
rightm
nT
leftm


(4)

For the computed optimal position, the heading is determined
according to the criterion minψk =

(
ψk−1p − ψk

)2
/dp +(

ψk−1s − ψk
)2
/ds, s.t. Visible(gk, ψk), where

Visible(gk, ψk) means that from the given configuration,
gk and ψk, the whole triangle is visible. dp and ds are the
Euclidean distances from gk to gk−1p and gk−1s respectively.
For simple sensor setups establishing the boundaries on ψk
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for Visible(gk, ψk) = TRUE makes the solution explicit.
Otherwise a grid search can be employed.

C. Extensions for Fixed-Wing UAVs

Fixed–Wing UAVs correspond to another excellent config-
uration for inspection operations. However, their advantages
in aspects like long–endurance, come together with limi-
tations on handling sharp turns, steep ascents or descents.
Moreover, the direction of a fixed camera is related to the
direction of travel. Accordingly, the implementation for the
BVS and the viewpoint sampling have to be adapted.

Assuming that highly dynamic maneuvers are avoided for
inspection flights, the minimum turn radius of the aircraft is
constrained to be rmin while roll and pitch are considered to
be near zero. For planning purposes, the xy–plane vehicle
dynamics are captured using Dubins curves, thus minimizing
the distance w.r.t. rmin. Furthermore, in the vertical direction
the path is constrained by a maximum climb and sink
rate. Since these values are small, instantaneous changes
are acceptable and the rate ż is chosen to be constant
along a path segment. If the maximum rate is exceeded,
ascending/descending loitering circles are added at the end of
the path segment to allow larger changes of height. In many
practical cases such as flat landscape coverage, it makes
sense to constrain the height of the path to a fixed value
to avoid undesirable loitering circles. The fixed-wing UAV
is assumed to travel with constant velocity vFW and the path
cost is the time tex = lPath/vFW , with lPath the path length.

In contrast to the case of rotorcraft UAVs, where only the
distance is minimized in the viewpoint position sampling
step, the fixed-wing UAV sampler also aims to align the
viewpoints on a as straight line as possible. This effectively
avoids too many curly path segments and thus, together
with the distance minimization tends to reduce the path
length. The addition in the objective is therefore to minimize
the squared distance d2 to the straight line between the
neighbouring viewpoints. Using its direction vector b, the
distance is calculated as follows:

b =
gk−1
s − gk−1

p∥∥∥gk−1
s − gk−1

p

∥∥∥ (5)

d =
∥∥∥b× (gk − gk−1

p )
∥∥∥ =

∥∥∥∥∥∥
 0 −b3 b2
b3 0 −b1
−b2 b1 0

 (gk − gk−1
p )

∥∥∥∥∥∥
and with  0 −b3 b2

b3 0 −b1
−b2 b1 0

 (gk − gk−1
p ) = q (6)

follows d2 = qT q. To avoid the insertion of unnecessary
circles, the distance between the viewpoints has to be
large enough according to their heading, the direction to
the next viewpoint and rmin. The bounds on that distance
li, i = {p, s} are derived geometrically and evaluated using
numerical algorithms. The distance criterions are therefore
(gk − gk−1i )T (gk − gk−1i ) ≥ l 2

i , i = {p, s} which are non-
convex. To convexify, the criterions are linearized around
the old viewpoint. This adaptation is conservative by the

TABLE I: Scalable Inspection Scenario

Nfacets [100...3600] ∠incidence 30◦

FoV [70, 70]◦ Mouting pitch 25◦

Range unconstrained Height 200m
rmin 60m vFW 9m/s
vmax 5m/s ψ̇max 0.5rad/s

exclusion of the non-convex part and attenuates the impact
of the extrapolation error:

(gk − gk−1i )T (gk−1 − gk−1i ) ≥ l 2
i , i = {p, s} (7)

Wrapping all up in a single QP-formulation and adding
the two slack variables εp and εs with constant C to allow
occasional violation of the minimal distance criterion:

min
q,gk

(objective in (4)) + qT q + C(εp + εs) (8)

s.t.

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 (gk − gk−1
p ) = q

constraints in (4)
(gk−1 − gk−1

p )T

(gk−1 − gk−1
s )T

 gk �
constraints in (4)

l 2
p − εp
l 2
s − εs

 (9)

εp ≥ 0

εs ≥ 0

The criterion of Equation (7) is inverted for the heading
computation and applied as long as a feasible solution is
found. The proposed approach also works efficiently in case
of obstacles up to some complexity by dividing the sampling
space in convex pieces that are evaluated individually. In our
implementation obstacles are approximated with cuboids.

D. Additional Heuristic Concepts

Additional heuristic measures increase the quality of com-
puted paths. These primarily concern the rotorcraft UAV
path planning. In order to allow a faster and more rigorous
ordering of the viewpoints, initial iterations of the algorithm
consider not the nearest neighbour on the tour to minimize
the distance to, but neighbours that are NNeighbour away on
both sides. NNeighbour is then decremented in every iteration
to finally reach 1. To further improve the viewpoint ordering,
the allowable yaw rate is set lower in the initial iterations and
then slowly increased to reach the maximally allowed ψ̇max.

V. COMPUTATIONAL ANALYSIS

In order to evaluate the capabilities of the proposed
algorithm, a simple and scalable scenario is used. An array of
equilateral triangles is arranged in a plane as shown in Figure
3, with a height of 1250m and a width of

√
3
2 2500m. This

corresponds to an area of 2.71km2. This area is filled with
a variable number of equilateral triangles, effectively cor-
responding to different mesh resolutions and thus numbers
of viewpoints. The mesh resolution is varied to examine the
impact on the quality of the resulting path, while the number
of viewpoints is a meaningful parameter of the problem
complexity and the time the algorithm needs for execution.
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Fig. 3: Illustration of the triangular pattern that is used in different
resolutions for the following analysis of the algorithm’s character-
istics. Overlayed in brown is a naive sweeping path with a certain
base line (in this case the same as the triangle edge length).
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Fig. 4: Correlation of the number of viewpoints for both systems
with the computational time consumption. The time consumption
curve is given individually for different components of the algo-
rithm.

Both for the rotorcraft and the fixed–wing UAV cases,
the inspection is performed from a constant height of 200m
above ground, with a minimum incidence angle of 30◦. The
employed camera is mounted with a pitch of 25◦, the FoV
is 70◦ in both vertical and horizontal directions, while a
margin for robustness is deducted in the horizontal direction,
thus leading to an effectively usable opening of 60◦. This
reduction from the nominal FoV is done in all test cases. The
rotorcraft UAV is assumed to move with a maximum trans-
lational speed of 5m/s and a maximum yaw rate of 0.5rad/s,
while the minimum turn radius for the fixed-wing is 60m.
Simulations for both models, using triangular patterns with
variable numbers of facets, were performed on a computer
with a 1.73GHz processor running Ubuntu 14.04 and using
a single-thread C++ implementation. The time consumption
for the computation is depicted in Figure 4 for the rotorcraft
and the fixed–wing UAV cases. It shows accumulated time
consumptions of the different parts of the algorithm, as well
as the total, while Figure 5a depicts the relative shares.
The time complexity of the algorithm for large numbers of
viewpoints is dominated by the LKH for which [10] gives
a time complexity of O(N2.2), where N is the number of
viewpoints. Less dominant is the viewpoint sampling, with a
complexity of O(N), since the constant complexity method
of sampling has to be repeated for every viewpoint. Lastly,
the complexity of the distance computations is O(N2), since

500 1000 1500 2000 2500 3000 3500
0

50

100

T
im

e
 [
%

]

Rotorcraft UAV

 

 

200 400 600 800
0

50

100

T
im

e
 [
%

]

Fixed−wing UAV

 

 

LKH

Distance

VP sampling

Overhead

LKH

Distance

VP sampling

Overhead

(a) Relative time consumption

0 1000 2000 3000
0

50

100

C
o
s
t 
[m

in
]

Rotorcraft UAV

0 200 400 600 800 1000
0

100

200

300

400

Number of facets [−]

C
o
s
t 
[m

in
]

Fixed−wing UAV

(b) Resolution dependent cost

Fig. 5: Figure 5a depicts the relative time consumption of different
parts of the algorithm, while Figure 5b shows the cost of the
computed paths for different amount of facets, corresponding to
varying mesh resolution.
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Fig. 6: Improvement of the path cost over the course of 25 iterations
for 100, 144 and 256 facets. The left top figure depicts a run
without heuristics and one with the heuristic on the viewpoint
neighbours (running for the first 10 iterations) and the heuristic on
the viewpoint yaw (running for the first 15 iterations). As shown,
for the fixed–wing UAV case a less smooth path improvement
procedure takes place after the first iterations due to the additional
complexity introduced by the nonholonomic constraints.

the distance has to be computed for all pairs of viewpoints.
The predicted behaviour of the viewpoint sampling and
distance computation complexities can be observed in the
plots for the rotorcraft UAV case (Figure 4a), which contain
scenarios for up to 3600 viewpoints. For lower numbers of
viewpoints 25 iterations were performed, while for numbers
of viewpoints above 900, 50 iterations were performed in
order to find high quality paths. Consequently the rotorcraft
graphs contain two seperate curves. The fixed–wing UAV
graphs in Figure 4b were computed with 25 iterations for
numbers of viewpoints up to 900. Overall, the relative time
consumption plots in Figure 5a show an increasing share
of computation time for the LKH for larger numbers of
viewpoints, as could be expected from the theoretical com-
plexities. Evidently, the distance computation, which time-
wise is insignificant for the rotorcraft UAV case, consumes
a large part of the computation time for the fixed–wing case.
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This is due to the fact, that the system constraints induce
an asymetric TSP, which doubles the amount of viewpoints
(corresponding to both directions of travel). While the TSP
solver can efficiently handle this, the number of two state
boundary value problems is quadrupled. As the number of
facets increases, the path is more densely populated with
viewpoints, thus attenuating the increase of cost through
the larger amount of connections. This can be observed
in Figure 6b for both the rotorcraft and the fixed–wing
UAV, respectively. To further validate the proposed approach,
comparison to a sweeping path as depicted in Figure 3 can
be made. With an image base–line of approximately 190m 7
sweeps of 2165m length are necessary to cover the area, to
which adds the translation of 6 times the base–line. With
a travel speed of 5m/s the resulting path cost is 3259s,
which is more than double the cost of what the proposed
algorithm computes for a rotorcraft UAV when planning
with e.g. 100 facets (1234.90s). This stands as an indication
of the performance of the algorithm, the main strength of
which is however related with complex 3D scenarios, as
those presented in Section VI, where simplified approaches
like the sweeping path lose their potential.

Finally, the path length over the course of 25 iterations
is depiced in Figure 6 for 100, 144 and 256 facets. The
effect of the additional heuristics on finding a better final
solution for the rotorcraft UAV case is shown in the top plot
of Figure 6a where the cost curve is compared to the one
without the heuristics discussed in Section IV-D. Overall,
quick progression towards lower–cost paths is achieved for
all scenarios, while for the fixed–wing UAV case the curve
flattens sooner due to the additional complexity introduced
by the nonholonomic constraints.

VI. EVALUATION TEST–CASES

Within this section advanced evaluation test–cases in
simulation and experimental studies are presented. Three
challenging experiments are presented, one using a rotorcraft
and two with a 5.6m wingspan fixed–wing UAV.

A. Complex 3D Simulation Test–Case

As a complex simulation test–case, a mesh model of
the 405m high Central Radio & TV Tower in Beijing was
used [3]. The employed mesh contains Nfacets = 1701
triangular facets that model the real building. A rotorcraft
vehicle is assumed which is subject to a maximum allowed
linear velocity of vmax = 2m/s and a maximum yaw rate
ψ̇max = 0.5rad/s while it carries a camera sensor mounted
with 15◦ pitch and has a field of view [120, 120]◦ along the
vertical and the horizontal axis respectively. Furthermore, it
is enforced that the distance of the camera to the inspected
structure is set between 10m and 25m to ensure safety but
also close–inspection capable of revealing structural prob-
lems (e.g. cracks). The test–case parameters are summarized
in Table II. The building and the derived inspection path
are illustrated in Figure 7. Eventually, this complex test–
study reveals the high–performance characteristics of the
proposed inspection planner which are further evaluated

TABLE II: Beijing Tower Inspection Scenario

Nfacets 1701 ∠incidence 30◦

FoV [120, 120]◦ Mouting pitch 15◦

dmin 10m dmax 25m
vmax 2m/s ψ̇max 0.5rad/s

in the experimental studies presented in subsections VI-B
and VI-C.
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Fig. 7: Large scale structure to be inspected: The 405m high Central
Radio & TV Tower in Beijing. The mesh used to compute the path
contains 1701 triangular facets. After a computation time of 92s
the cost for the inspection is 2997.44s with a maximal speed of
2m/s and a maximal yaw rate of 0.5rad/s. The red point denotes,
start– and end–point of the inspection.

B. Rotorcraft UAV Inspection Operations

A first experimental test study was conducted using an
AscTec Firefly Hexacopter MAV onboard of which the
Visual–Inertial Sensor (VI–Sensor) developed by our lab and
Skybotix AG was further integrated. The VI–Sensor inte-
grates 2 HDR global shutter cameras (Aptina MT9V034) and
an Analog Devices ADIS16448 IMU in a tightly aligned and
synchronized way using an ArtixTM–7 FPGA, a Xilinx Zynq
7020 SoC module and an ATOM CPU running Linux. This
integrated sensor system runs advanced image processing
algorithms, provides complete pose estimates and builds a
3D map of the environment. Figure 8 shows the employed
UAV equipped with the VI–Sensor.

The experimental setup refers to the inspection of the
3D structure shown in Figure 9 and consists of 106 facets
capturing the structure in detail. The scenario is further
complicated by a bounding box of 3×3×2.75m and a sensing
minimum range dmin = 1m. This inspection structure was
offline reconstructed from a set of terrestrial images and
consequently a mesh was computed to be utilized by the
proposed inspection path planner. Table III summarizes the
experiment parameters. Using the proposed inspection path
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Fig. 8: The Firefly UAV equipped with the VI–Sensor.

TABLE III: Rotorcraft UAV Inspection Scenario

Nfacets 106
∠incidence 30◦ Bounding box 3x3x2.75m
FoV [60, 90]◦ Mouting pitch 15◦

dmin 1m dmax 3m
vmax 0.25m/s ψ̇max 0.5rad/s

planner, a path that guarantees complete coverage is derived
and has a total length of 151.44s. Reconstruction results
derived using pose–annotated (position and rotations) image
sequences from one of the VI–Sensor cameras and the Pix4D
software indicate excellent 3D reconstruction results, a fact
that further increases confidence on the practical applicability
of the proposed algorithm. The reference path and the
recorded flight response along with the reconstruction results
are shown in Figure 9. The arrows indicate the reference
viewpoints proposed by the inspection planner.

Fig. 9: Experimental study of the inspection of a trolley. The
preliminary, terrestrial images–based, 3D reconstruction of the
inspection structure is depicted and was used to derive a simplified
mesh that was then employed by the inspection path planner to
compute the inspection path shown in the Figure. The path cost is
151.44s for vmax = 0.25m/s and ψ̇max = 0.5rad/s .

C. Fixed-Wing UAV Inspection Operations

A second set of experiments was conducted using a
long endurance fixed–wing UAV platform developed by our

TABLE IV: Marche–en–Famenne Inspection Scenario

Nfacets 8, 8 ∠incidence 30◦

vFW 9m/s rmin 60m, 60m
FoV [90, 50]◦, [120, 120]◦ Mouting pitch 50◦, 90◦

Range unconstrained Height 120m, 100m

lab. The particular platform, AtlantikSolar [20], is a 5.6m
wingspan, 7.5kg, solar–powered vehicle with robust state–
estimation capabilities [22], automatic trajectory tracking
control [19] and further integrates a) an advanced sensor pod
with a monocular version of the aforementioned VI–Sensor
with the Aptina MT9V034 camera mounted at a 50◦ front–
down oblique view and every image is fully pose–annotated
as well as b) a GPS–tagged Sony HDR-AS100VW camera.
Figure 10 depicts the UAV as well as the sensor pod.

Fig. 10: The AtlantikSolar UAV with the sensor pod attached to its
wings and further photos of the sensor pod, the solar cells and an
instant of the hand–launching.

With this UAV corresponding to an excellent test–case for
nonholonomic inspection path planning, two inspection mis-
sions were designed to be conducted within the framework
of the ICARUS project field–trials in the area of Marche–en–
Famenne in Belgium [13]. Geographical Information System
(GIS) data were used to derive a first, rough, 8 facets
(Nfacets = 8) mesh of the area and subsequently two
inspection paths were computed, one for the oblique view
grayscale camera of the VI–Sensor with a fixed reference
altitude set at an absolute value zr = 362m (corresponding
to 120m above the highest point to be inspected) and the
other for the nadir–mounted Sony HDR-AS100VW with
zr = 342m, while the modelled minimum turning radius was
rmin = 60m. Table IV summarizes the parameters used for
the two experiments. Figures 11 and 12 present the results for
the two camera configurations. In both cases, the optimized
reference inspection path, the real recorded UAV trajectory
as well as an offline computed dense point–cloud of the
inspection area are shown such that the completeness of
coverage is visually assessed. The point clouds are derived
using the pose–annotated images and the Pix4D software and
are freely available online [2].

For both configurations the proposed inspection planner
manages to provide short distance paths that guarantee com-
plete coverage while accounting for the motion constraints
of the fixed–wing UAV. The reconstructed point cloud is
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Fig. 11: Inspection path and point–cloud for 3D reconstruction pur-
poses using the front–down mounted view grayscale camera of the
VI–Sensor onboard AtlantikSolar. Blue line represents the reference
path, green circles are used to indicate the actual waypoints loaded
to the autopilot and red is used for the vehicle response. The planner
commands the vehicle to navigate such that the camera covers the
whole desired area marked with dashed cyan line. A UTM31N
coordinate system is employed.

Fig. 12: Inspection path and 3D reconstruction results using the
nadir mounted Sony HDR-AS100VW onboard AtlantikSolar. Blue
line represents the reference path, green circles are used to indicate
the actual waypoints loaded to the autopilot and red is used for the
vehicle response. The planner commands the vehicle to navigate
such that the camera covers the whole desired area marked with
dashed cyan line. A UTM31N coordinate system is employed.

very dense which indicates that such short paths remain
practically useful for high fidelity reconstruction purposes
where significant overlap is typically required.

VII. SUMMARY & CONCLUSIONS

Within this paper, a practically–oriented fast inspection
path planning algorithm capable of computing efficient solu-
tions for complex 3D structures represented by triangular
meshes was presented. The method was first tested on a
scalable scenario and the results were summarized both
for the case of a rotorcraft as well as a fixed–wing UAV.
Subsequently, the capabilities of the algorithm were demon-
strated in real–world application scenarios and experimental
studies using both UAV configurations. With the help of 3D–
reconstruction software, the recorded inspection data were
postprocessed to support the claim of finding full coverage
paths and the point cloud datasets are released to enable
evaluation of the inspection quality. An implementation of

the presented algorithm is accessible [17] for further use and
development by the community.
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Abstract This paper presents a new algorithm for three-
dimensional coverage path planning for autonomous struc-
tural inspection operations using aerial robots. The proposed
approach is capable of computing short inspection paths
via an alternating two-step optimization algorithm accord-
ing to which at every iteration it attempts to find a new and
improved set of viewpoints that together provide full cov-
erage with decreased path cost. The algorithm supports the
integration of multiple sensors with different fields of view,
the limitations of which are respected. Both fixed-wing as
well as rotorcraft aerial robot configurations are supported
and their motion constraints are respected at all optimiza-
tion steps, while the algorithm operates on both mesh- and
occupancymap-based representations of the environment. To
thoroughly evaluate this new path planning strategy, a set of
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large-scale simulation scenarioswas considered, followed by
multiple real-life experimental test-cases using both vehicle
configurations.

Keywords Coverage planning · Aerial robots ·
Autonomous inspection

1 Introduction

With the constant demand for higher automation in every-
day processes, mobile robots permeate our daily life and are
gettingmore andmore utilized in civilian applications. Either
in the form of aerial, maritime or ground vehicles, robots are
already employed within critical tasks such as infrastructure
monitoring, damage assessment or victim search. Indica-
tive examples include those of bridge inspection (Metni and
Hamel 2007), power-line monitoring (Kroll et al. 2009),
boiler power-plant 3D reconstruction (Burri et al. 2012)
and gas pipelines surveillance (Boon and Lovelace 2014).
In most of such scenarios, the structure to be inspected
may be provided in the form of a 3D model, typically a
mesh or a voxels-based representation derived either using
CAD software, Geographical Information Systems data or
civil engineering instrumentation, or previous sensor-based
reconstruction missions. Robots are then (re-)employed to
derive an updated, possibly higher-fidelity model or scan for
changes, risks and hazards (e.g. cracks). Among all possible
different robot configurations, Unmanned Aerial Vehicles
(UAVs) have attracted significant attention for a variety of
structural inspection operations, for their ability to move in
unstructured environments.

To facilitate the means for autonomous inspection, a robot
must be equipped with the necessary accurate control units,
the appropriate sensor systems and the relevant global path
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planning intelligence. Such path planning algorithms should
be able to lead to the quick computation of efficient paths
that result in full coverage of the structure to be inspected,
while respecting the on-board sensor limitations as well as
the vehicle motion constraints that may apply. Due to the
nature of the coverage problem, and despite the efforts of the
community, its inherent difficulties still pose hard limitations
on the performance, efficiency and practical applicability of
the proposed solutions especially when 3D structures are
considered. Furthermore, to the authors’ best knowledge,
only very few works validated their algorithmical contribu-
tions with real-life experiments, assessed their ability to be
implemented on-board or evaluated the quality of the recon-
struction results using the robot sensors.

Within this work, a novel, fast, iterative algorithm for
three-dimensional structural coverage planning for aerial
robotic inspection applications is proposed. The new path
planning algorithm employs an alternating two-step opti-
mization paradigm to compute good viewpoints that together
provide full coverage while leading to a connecting path
that has a low cost (e.g. distance, time-to-travel). Within
every iteration, the set of updated viewpoint configurations is
selected such that a) combining all viewpoints full coverage is
achieved, and b) the cost-to-travel between the corresponding
vehicle configuration and the neighboring viewpoint config-
urations gets reduced (first step). Subsequently, the optimally
connecting and collision-free tour is recomputed (second
step). The robots under consideration can integrate an arbi-
trary sensor system that is not limited to a single field of
view, e.g. an aerial robot with two cameras facing in differ-
ent directions. Not only the sensor’s respective limitations
like limited field of view, maximum and minimum practi-
cal observation distances are respected, but also the motion
constraints of the vehicle. To evaluate the capabilities of the

new structural inspection path planning algorithm, a variety
of challenging and large-scale simulation test-cases were ini-
tially employed. Finally, the algorithmwas thoroughly tested
in practice based on flight experiments using both a small
rotorcraft (hexarotor) UAVaswell as a 5.6mwingspan solar-
powered fixed-wing UAV (both shown in Fig. 1). Analysis
of the recorded flight results indicates the high-performance
properties of the algorithm in challenging scenarios with
complex inspection structures and subject to real vehicle
and sensor constraints. Overall, this paper corresponds to
a major extension of the authors’ previous preliminary work
in Bircher et al. (2015b) in terms of advanced sensor models
that are not limited to a single field of view, different world
representations of mesh and occupancy maps, improved col-
lision checking mechanisms, implementation of algorithm
updates and heuristic extensions. Additionally, extensive
simulation studies using large-scale 3D scenarios and awhole
new set of experimental studies of increased complexity are
provided, as well as discussion of important implementa-
tion details and scientific documentation of our open-source
released toolbox that may be found in Bircher and Alexis
(2015). Furthermore, a rich and continuously updated dataset
is released online (Bircher et al. 2015a). Finally, this paper
also provides further details on the aerial robots employed,
their autopilot, perception and computation properties and
components.

This paper is structured as follows. A short overview of
the related work and how our approach contributes further is
presented in Sect. 2, followed by the problem description in
Sect. 3. The proposed approach is presented in Sect. 4. Eval-
uation test-cases in simulation and experiments are shown in
Sects. 5 and 6 while brief notes on the code and dataset
released are provided in Sect. 7. Finally, conclusions are
drawn in Sect. 8.

Fig. 1 Indicative inspection 3D
reconstruction results using the
proposed structural inspection
planner and a rotorcraft as well
as a fixed-wing UAV equipped
with camera sensors
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2 Related work

Due to the difficulty of coverage planning problems, early
contributions relied on simplifications of the problem setup.
Depending on the employed system and the environment, the
space may be represented by a simplified discrete grid and
paths can be computed using wavefront algorithms (Zelin-
sky et al. 1993), spanning trees (Gabriely and Rimon 2002)
or neural networks (Luo et al. 2002). The work in Choset
and Pignon (1998) proposed a cellular decomposition of
the planning space, covering each free cell with a sweep-
ing pattern. An advanced algorithm following this concept
was presented in Acar et al. (2006). Also covering surface
cells with a sweeping pattern, the work in Atkar et al. (2004)
proposes a method for uniform coverage in spray painting
applications. Employing a 2D planner, the authors in Hert
et al. (1996) approximate a 3D structure using multiple
2D layers, treated individually. In order to enable versatile
inspection path planning for real 3D structures, advanced
algorithms have recently been proposed. Within the most
recent contributions, those that employ a two-step optimiza-
tion scheme proved to be more versatile with respect to
the inspection scenario. The first step of such algorithms is
to compute the minimal set of viewpoints that covers the
whole structure. This corresponds to solving an art gallery
problem (AGP), a NP-hard but well studied problem. Fast
algorithms to solve this problem are presented for example
in O’rourke (1987); González-Baños (2001). As a second
step in these coverage planning approaches, the shortest con-
necting tour over all these viewpoints has to be computed,
which is the traveling salesman problem (TSP). Also this
problem is NP-hard, but fast algorithms have long been pro-
posed, e.g. (Dantzig et al. 1954; Lin and Kernighan 1973). A
recent application of these concepts, that allows some redun-
dancy in the AGP such that it is able to improve the path in
a post-processing step, was presented in Hover et al. (2012).
This algorithm can deal with 3D scenarios and is demon-
strated in experiments using underwater vehicles for ship
hull inspection. Addressing the problem from a different per-
spective, the work in Papadopoulos et al. (2013) concentrates
on deriving close-to-optimal solutions at the inherently large
cost of computational efficiency. A comprehensive survey of
the existing coverage path planning methods may be found
in Galceran and Carreras (2013).

The proposed fast inspection path planner retains a two-
step optimization structure, but contrary to trying to find a
minimal set of viewpoints in the AGP it rather tries to sample
them such that the connecting path is short while ensuring
full coverage. This is driven by the idea that with a contin-
uously sensing sensor the number of viewpoints (and if this
is minimal or not) is not necessarily important, but mostly
their configuration in space, which has to be such that short
paths are provided. As a result, this novel approach leads to

full coverage paths that are of low cost and are computed in
short time.

3 Problem description

The problem of structural inspection path planning is, within
the scope of this work, defined as that of the challenge to
find a high quality path that guarantees the complete cover-
age of a given 3D structure subject to dynamic constraints
of the vehicle and limitations of the on-board sensor sys-
tem. The 3D structure to be inspected may be represented
in a computationally efficient way such as a triangular mesh
or a voxel-based octomap and is embedded into a bounded
environment that may contain obstacle regions. The problem
setup is to be such that for each triangle in the mesh, there
exists an admissible viewpoint configuration—that is a view-
point from which the triangle is visible for a specific sensor
model. Then, for the given environment and with respect to
the operational constraints, a path connecting all viewpoints
has to be found which guarantees complete inspection of the
3D structure. Quality measures for paths are situation spe-
cific, depending on the system and mission objectives, e.g.
short time or distance.

As sample systems we consider a rotorcraft and a fixed-
wing UAV, both equipped with one (or more) visual cameras
with a fixed orientation relative to the platform. Minor
adaptations to the proposed path-planner enable its use
for other common robot configurations such as underwa-
ter ROVs or wheeled robots. The proposed approach also
works with multi-camera setups or even omnidirectional
sensors.

4 Proposed approach

As the algorithm does not focus on minimizing the number
of viewpoints, the proposed approach selects one admissi-
ble viewpoint for every triangle in the mesh of the structure
to be inspected. In order to compute viewpoints that allow
low-cost connections, an iterative resampling scheme is
employed. Between each resampling, the best path connect-
ing the current viewpoints is recomputed. The quality of the
viewpoints is assessed by the cost to connect to their respec-
tive neighbors on the latest tour. This cost is minimized in the
subsequent resampling, resulting in locally optimized paths.
Initialization of the viewpoints is arbitrarily done such that
full coverage is provided with, at this stage, non-optimized
viewpoints. A fast implementation of the Lin–Kernighan–
Helsgaun Heuristic (LKH) TSP solver (Helsgaun 2000) is
employed to compute the best tour, while the cost of the
interconnecting pieces of path is calculated by means of a
boundary value solver (BVS). The iterative search for better
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paths is terminated after a maximum of Nmax iterations. An
overview of the proposed inspection planning procedure is
presented in Algorithm 1.

Algorithm 1 Structural Inspection Planner
1: k ← 0
2: Sample initial viewpoint configurations
3: Compute cost matrix for the TSP solver (Sect. 4.1)
4: Solve the TSP problem to obtain initial tour
5: while k < Nmax do
6: Resample viewpoint configurations (Sect. 4.2)
7: Recompute the cost matrix (Sect. 4.1)
8: Recompute best tour Tbest using the LKH and update best tour

cost cbest if applicable
9: k ← k + 1
10: end while
11: return Tbest , cbest

In the following, the path generation, as well as the opti-
mization problem formulation to sample the viewpoints for
a rotorcraft UAV are described. Adaptations to plan for a
fixed-wing UAV are discussed in Sect. 4.3. Subsequently,
some extensions for collision avoidance and heuristic speed-
up are described.

4.1 Path computation and cost estimation

In order to find the best tour among the viewpoints, the TSP
solver requires a cost matrix containing the connection cost
of all pairs of viewpoints. A two state BVS is employed to
generate paths and estimate the respective costs. The BVS
is either employed directly to connect the two viewpoints
or as a component in a local planner. The latter applies in
case the direct connection is not feasible due to obstacles.
In that case, our implementation makes use of the RRT∗-
planner (Karaman and Frazzoli 2011) to find a collision-free
connection. The state of the proposed model for a rotorcraft
UAV consists of position as well as yaw, ξ = {x, y, z, ψ}.
As slow maneuvering is desired to achieve increased inspec-
tion accuracy (in terms of localization as well as control loop
robustness and performance), the roll and pitch angles are
considered to be near zero during the path planning com-
putation process. The path from configuration ξ0 to ξ1 is
given by ξ(s) = sξ1 + (1 − s)ξ0, where s ∈ [0, 1]. The
single limitation considered is the speed limit. The transla-
tional limit is denoted by vmax while the rotational speed
is limited by ψ̇max . To allow sufficiently accurate tracking
of paths with corners, both values are small. The resulting
execution time is tex = max(d/vmax , ‖ψ1 − ψ0‖ /ψ̇max ),
with d the Euclidean distance. The considered cost met-
ric of a path segment corresponds to the execution time
tex .

4.2 Viewpoint sampling

Considering amesh-based representation of the environment,
a viewpoint has to be sampled for each of its triangular
facets. In the proposed procedure, its position and heading
is determined sequentially while retaining visibility of the
corresponding triangle. First, the position is optimized for
distance w.r.t. the neighboring viewpoints using a convex
problem formulation and only then, the heading is optimized.
To guarantee a good result of this multistep optimization
process, the position solution must be constrained such as to
allow finding an orientation for which the triangle is visible.

More specifically, the constraints on the position g =
[x, y, z] consist of the inspection sensor limitations of
minimum incidence angle, minimum and maximum range
(dmin, dmax ) constraints (depicted in Fig. 2a). They are for-
mulated as a set of planar constraints:

⎡
⎣

(g − xi )T ni
(g − x1)T aN

−(g − x1)T aN

⎤
⎦ �

⎡
⎣

0
dmin

−dmax

⎤
⎦ , i = {1, 2, 3} (1)

where xi are the corners of the mesh triangle, aN is the
normalized triangle normal and ni are the normals of the
separating hyperplanes for the incidence angle constraints as
shown in Fig. 2a.

Further, the sensor has a limited field of view (FoV) with
a certain vertical and horizontal opening and is mounted to
the system with a fixed pitch angle and relative heading. As
illustrated in Fig. 2b, in 2D the angle constraining the lower
bound of the FoV constrains the upper bound of the sam-
pling space, together with the most restrictive corner of the
facet. With the equivalent constraint from the upper bound
of the FoV, sampling is constrained to a triangular section.
The total sampling space resulting from the vertical camera
opening constraint is the union of all these triangular sec-
tions over all horizontal directions, which is not convex. To
approximate and convexify the problem, the space is divided
in NC equal convex pieces according to Fig. 2b. The opti-
mum is computed for every slice in order to find the globally
best solution. Multiple sensors with different vertical FoVs
are handled equally, resulting in a multiple of NC convex
pieces that possibly overlap. The constraints for piece j are
derived as follows: Left and right boundaries of the sam-
pling space are the borders of the revolution segment and
the cone top and bottom are represented by a single plane
tangential to the centre of the slice. Angular camera con-
straints in horizontal direction are not encoded and instead
dmin is chosen high enough to allow full visibility of the tri-
angle. This leaves some space for variation in the sampling
of the heading, where the horizontal constraints are enforced.
Specifically, the abovementioned constraints are:
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(a) (b)

Fig. 2 a Incidence angle constraints on a triangular facet. The figure
depicts the three main planar angle of incidence constraints on all three
sides of the triangle. For a finite number of such constraints the incidence
angle is only enforced approximately. The red line (and n+) demarks a
sample orientation for a possible additional planar constraint at a corner.
Minimum (green plane) and maximum (red plane) distance constraints
are similar planar constraints on the sampling area. These constraints
bound the sampling space, where g can be chosen, on all sides (gray
area). b Camera constraints and convexification. The vertical camera
angle constraints with the relevant corners of the triangle in red are
depicted in the upper part. In 2D they constrain the sampling space
to a triangular region, the union over all horizontal direction of which
is not convex. Beneath the partition of the space for convexification is
depicted (Color figure online)

⎡
⎢⎢⎣

(g − xrellower )
T ncamlower

(g − xrelupper )
T ncamupper

(g − m)T nright
(g − m)T nle f t

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ , (2)

where xrellower , x
rel
upper are the respective relevant corners of

the mesh triangle, m the middle of the triangle and ncamlower ,
ncamupper , nright and nle f t denote the normal of the respective
separating hyperplanes.

The optimization objective for the viewpoint sampling in
iteration k, in the case of a rotorcraft UAV, is to minimize the
sumof squareddistances to the precedingviewpoint gk−1

p , the
subsequent viewpoint gk−1

s and the current viewpoint gk−1

in the old tour. The former two parts potentially shorten the
tour by moving the viewpoints closer together, while the lat-
ter limits the size of the improvement step, as gk−1

p and gk−1
s

potentially move closer as well. The weighting matrix B for
the neighbor distance is given bydiag(bconst , bconst , aconst+
bconst ), where bconst is the general weight for distance to
neighbors, while aconst additionally punishes changes in
height. The distance to the current viewpoint in the old tour
is weighted by the matrix D = diag(dconst , dconst , dconst ).

The resulting convex optimization problem is given below.
Its structure as a quadratic program (QP) with linear con-
straints allows the use of an efficient solver (Ferreau et al.
2014).

min
gk

(gk − gk−1
p )T B(gk − gk−1

p ) + (gk − gk−1
s )T

B(gk − gk−1
s ) + (gk − gk−1)T D(gk − gk−1) (3)

s.t.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nT1
nT2
nT3
aTN

−aTN
ncam T
lower

ncam T
upper
nTright
nTle f t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

gk �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nT1 x1
nT2 x2
nT3 x3

aTN x1 + dmin

−aTN x1 − dmax

ncam T
lower x

rel
lower

ncam T
upper x

rel
upper

nTrightm
nTle f tm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

For the computed optimal position, the heading is deter-

mined according to the criterion minψk =
(
ψk−1

p − ψk
)2

/dp + (
ψk−1
s − ψk

)2
/ds , s.t. Visible(gk, ψk), where

Visible(gk, ψk) means that from the given configuration,
gk and ψk , the whole triangle is visible for at least one
of the employed sensors. dp and ds are the Euclidean
distances from gk to gk−1

p and gk−1
s respectively. For sim-

ple sensor setups establishing the boundaries on ψk for
Visible(gk, ψk) = true makes the solution explicit. Other-
wise a grid search can be employed.

4.3 Extensions for fixed-wing UAVs

Fixed-wingUAVs correspond to another excellent configura-
tion for inspection operations. However, their advantages in
aspects like long-endurance, come together with limitations
on handling sharp turns, steep ascents or descents. Moreover,
the direction of a fixed camera is necessarily related to the
direction of travel. Accordingly, the implementations for the
BVS and the viewpoint sampling have to be adapted.

Assuming that highly dynamic maneuvers are avoided for
inspection flights, the minimum turn radius of the aircraft
is constrained to be rmin while pitch and roll (as well as
bank) are considered to be near zero. For planning purposes,
the xy-plane vehicle dynamics are captured using Dubins
curves, thusminimizing the distancew.r.t. rmin. Furthermore,
in the vertical direction the path is constrained by amaximum
climb and sink rate. Since these values are small, instanta-
neous changes are acceptable and the rate ż is chosen to
be constant along a path segment. If the maximum rate is
exceeded, ascending/descending loitering circles are added
at the end of the path segment to allow larger changes of
height. In many practical cases such as flat landscape cover-
age, it makes sense to constrain the height of the path to a
fixed value to avoid undesirable loitering circles. The fixed-
wing UAV is assumed to travel with constant velocity vFW ,
and the path cost is the time tex = lPath/vFW , with lPath the
path length.
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In contrast to the case of rotorcraft UAVs, where only
the distance is minimized in the viewpoint position sampling
step, the fixed-wingUAVsampler also aims to align the view-
points on a as straight line as possible. This effectively avoids
too many curly path segments and thus, together with the
distance minimization tends to reduce the path length. The
addition in the objective is therefore to minimize the squared
distance d2 to the straight line between the neighboring view-
points. Using its direction vector b, the distance is calculated
as follows:

b = gk−1
s − gk−1

p∥∥∥gk−1
s − gk−1

p

∥∥∥

d =
∥∥∥b × (gk−gk−1

p )

∥∥∥=
∥∥∥∥∥∥

⎡
⎣

0 −b3 b2
b3 0 −b1

−b2 b1 0

⎤
⎦ (gk−gk−1

p )

∥∥∥∥∥∥
(5)

and with

⎡
⎣

0 −b3 b2
b3 0 −b1

−b2 b1 0

⎤
⎦ (gk − gk−1

p ) = q (6)

follows d2 = qT q. To avoid the insertion of unneces-
sary circles, the distance between the viewpoints has to be
large enough according to their heading, the direction to
the next viewpoint and rmin. The bounds on that distance
li , i = {p, s} are derived geometrically and evaluated using
numerical algorithms. The distance criteria are therefore
(gk − gk−1

i )T (gk − gk−1
i ) ≥ l 2i , i = {p, s} which are non-

convex. To convexify, the criteria are linearized around the
old viewpoint. This adaptation is conservative by the exclu-
sion of the non-convex part and attenuates the impact of the
extrapolation error:

(
gk − gk−1

i

)T (
gk−1 − gk−1

i

)
≥ l 2i , i = {p, s} (7)

Adding the two slack variables εp and εs with constant
weight C to allow occasional violation of the minimal dis-
tance criterion results in the following QP-formulation:

min
q,gk

(objective in (3)) + qT q + C(εp + εs) (8)

s.t.

⎡
⎣

0 −b3 b2
b3 0 −b1

−b2 b1 0

⎤
⎦ (gk − gk−1

p ) = q

⎡
⎣
constraints in (4)
(gk−1−gk−1

p )T

(gk−1−gk−1
s )T

⎤
⎦ gk �

⎡
⎢⎣

constraints in (4)
l 2p +(gk−1−gk−1

p )T gk−1
p −εp

l 2s +(gk−1−gk−1
s )T gk−1

s −εs

⎤
⎥⎦

εp ≥ 0

εs ≥ 0 (9)

The criterion of Eq. 7 is inverted for the heading compu-
tation and applied as long as a feasible solution is found.

Recall the weight of the distance to neighbor viewpoints
B = diag(bconst , bconst , aconst + bconst ). While in the rotor-
craft case aconst has a minor role, for the fixed-wing planning
it provides an effective means to enforce minimization of
height difference and thus has a major impact on the path
quality. A high aconst reflects the cost of loitering circles to
gain or lose height.

4.4 Obstacle avoidance

The proposed approach also works efficiently in cluttered
environments. Obstacle avoidance is easily achieved by
integrating a collision check in the BVS, that prevents con-
nections crossing facets of the mesh. In order to shape
a scenario according to requirements, additional cuboidal
obstacle regions can be defined, representing obstacles that
do not belong to the structure to inspect. Tomake sure that the
facets are visible from their viewpoints, visibility is checked
for occlusion by parts of the mesh. If interference is detected,
the QP is reformulated to include an additional planar con-
straint defined by a corner x I of the interfering facet triangle,
the centre of which is closest to the facet, as well as its normal
aI
N :

aI T
N gk ≥ aI T

N x I (10)

For meshes that do not self-intersect, this is a conserva-
tive exclusion of cluttered subareas. Depending on whether
a cuboidal obstacle region is some structure or just a no-fly
zone, it is also included in the visibility check. When, during
the viewpoint sampling, such an obstacle structure is encoun-
tered, the optimization problem is executed individually over
eight subregions. Each is bounded away from the cuboid on
one of its sides, similar to Eq. 10.

4.5 Additional heuristic concepts

Additional heuristic measures increase the quality of com-
puted paths. Primarily for the rotorcraft UAV path planning
additional heuristics can speed up the improvement. To allow
a faster and more rigorous ordering of the viewpoints, ini-
tial iterations of the algorithm consider not only the nearest
neighbor on the tour to minimize the distance to, but the
neighbors that are NNeighbor away on both sides. In every
iteration NNeighbor is then decremented to finally reach 1.

5 Simulation studies

Three simulation test-cases demonstrate the applicability of
the proposed algorithm to typical inspection problems. The
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Fig. 3 Wind turbine path (FoV: [120, 90]◦, dmin: 4m, 	 incidence: 35◦)
simulated in the Gazebo-based simulator RotorS (RotorS). The mesh
of the structure is depicted, of which the red part has to be inspected.
The computed path is plotted in blue, with the green arrows indicating
the optimized viewpoints. The closely following red line corresponds
to the simulated vehicle response (Color figure online)

utilization in large scenarios as well as use-cases with differ-
ent system setups are presented.

5.1 Wind turbine simulation scenario

As a realistic large scale simulation test-case for rotorcraft
inspection, a mesh model of a 120m high wind turbine (see
Fig. 3) was used (Grabcad). Indeed a large scale scenario,
such as the inspection of a wind farm, facilitates the need
for optimized paths such that the mission can be conducted
with the endurance-limited small but safe aerial robots with-
out the need to land and change batteries for multiple times.
The employed mesh is split in two parts, one comprising
the autonomously inspectable part (red), while the other

contains surfaces close to the turbine’s mechanisms (blue),
unsuitable for visual inspection from distances of multiple
meters. For the first subset of the mesh with 2220 triangular
facets inspection paths are computed. In order to examine the
influence of different parameters on the path quality, mul-
tiple executions are performed. Various fields of view are
employed, ranging from 90 to 120◦ in both vertical and hor-
izontal direction. The enforced minimal incidence angle is
varied from 25◦ to 50◦ with increments of 5◦. Finally, paths
are computed for minimally enforced inspection distances
to the structure of 2.5 and 4m, while the maximal distance
is set at 10m for all parameter sets. Using randomized ini-
tial viewpoints, 10 paths were computed for all parameter
sets in order to obtain indicative statistics. For the inspec-
tion mission, a rotorcraft vehicle is assumed which is subject
to a maximum allowed linear velocity of vmax = 0.5m/s
and a maximum yaw rate ψ̇max = 0.75 rad/s while it car-
ries the camera sensor mounted with 0◦ pitch. The test-case
parameters are summarized in Table 1. The turbine and the
derived inspection path for a sample parameter set are illus-
trated in Fig. 3. The computation time in this specific case
was 260 s. Also depicted is the vehicle response of a sam-
ple simulation run in the RotorS simulator (RotorS). RotorS
is an open-source Gazebo-based aerial robots simulator that
not only simulates the vehicle dynamics but also a variety of
sensors such as the IMU, a generic odometry sensor as well
as a complete and highly integrated system called visual–
inertial sensor (VI-Sensor) (Skybotix) (for more information
refer to Sect. 6.1.1). In addition to the vehicle response, such
a simulation also reveals the collision free quality of the path,
as physical interaction models between objects are included.
Due to the sparse optical features in the simulation, the qual-
ity of the reconstruction from the recorded data is limited and
therefore not included.

The employed path is computed with the specific parame-
ters of a FoV = [120, 90]◦, minimum inspection distance
dmin = 4m and angle of incidence 	 incidence = 35◦.
The complete statistics for all parameter sets are depicted
in Fig. 4. The left figure for dmin = 2.5m shows clear
trends for varying incidence angle constraints. With a large
FoV in vertical direction, an approximately linear correlation
between the chosen incidence angle and path cost is found.
When the vertical FoV is smaller, it constrains the path qual-
ity for lower angles of incidence, where the curves flatten.
This is due to the fact, that most facets are almost vertical
and large incidence angle and limited vertical FoV result
in similar planar constraints on the sampling space. At the
same time larger angles of incidence in combination with a
limited vertical FoV render the problem infeasible because
horizontal facets are not visible with the required accuracy.
No significant influence of the horizontal FoV is found in the
investigated range. This is because it can be compensated by
yawing which is inexpensive considering the rather large dis-
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Table 1 Wind turbine scenario
N f acets 2220 	 incidence 25−50◦

FoV [90, 90]◦, [120, 90]◦, [90, 120]◦, [120, 120]◦ Mouting pitch 0◦

dmin 2.5, 4m dmax 10m

vmax 0.5m/s ψ̇max 0.75 rad/s

Fig. 4 The influence on path
quality of different parameters
in the wind turbine scenario is
investigated. The left plot
depicts the mean path lengths
over 10 runs, depending on
incidence angle for different
fields of view. The minimal
inspection distance corresponds
to 2.5m. The right plot contains
the same information, but for a
minimal inspection distance of
4m
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tances between the viewpoints. Similar results are found for
a minimal inspection distance of 4m, although path costs are
generally larger and the influence of the constraints smaller.
For structures that are mostly locally convex, this result can
be expected.

5.2 Staircase inspection scenario

A second simulation experiment investigates the use of the
proposed planner for multi-camera setups. As an inspec-
tion scenario, a staircase is considered. A first model of the
environment is derived by exploring the structure using the
handheld VI-sensor and computing an occupancy map of the
obtained synchronized stereo vision data and pose estimates.
A part of the staircase, as well as its occupancy map counter-
part are depicted in Fig. 5a. From the occupancy map a mesh
is derived, representing the surface of the occupied voxels.
As high fidelity of the resulting mesh relies on a high reso-
lution of the occupancy map, the number of facets may very
fast grow beyond feasibility. Therefore the mesh is subsam-
pled and only then used to compute the inspection paths. This
processing pipeline allows the convenient derivation of a first
model to plan an inspection path.

This case-study assumes the same vehicle as in the
previous one, however, three different camera setups are
considered for comparison. The first uses a single camera
with a FoV of [120, 120]◦ and zero pitch, while the others
employ a multi-camera setup. One has an additional camera
with the same specifications facing in the opposite angular
direction, while the last employs a 360◦ setup, featuring four
such cameras arranged in 90◦ spacing. A minimum angle of

incidence of 20◦ is enforced along with an inspection dis-
tance between 0.3 and 1.5m. The allowed traveling speeds
are vmax = 0.5m/s and ψ̇max = 0.5 rad/s. The mesh was
used for occlusion and collision detection in all steps of the
algorithm. A summary of the employed parameters can be
found in Table 2. Figure 5b depicts the cost evolution over the
course of 20 planner iterations for all three setups. While in
all cases high quality paths could be found, larger FoVs obvi-
ously result in lower path costs. The inspection paths after
20 iterations, together with the derived mesh, are depicted in
Fig. 6 and have a final cost of 217.3, 185.6 and 150.7 s for
the three considered systems respectively. Due to the com-
plex structure, which makes it difficult to find collision-free
connections between the viewpoints, the computation for the
three paths lasted 288, 357 and 266 s.

.

5.3 Fixed-wing UAV large-scale landscape coverage
mission

A third test case, this time relevant with the fixed-wing UAV,
consists of a 33 km2 landscape around 4158m Jungfrau and
4107mMönch, two mountains in the Swiss Alps. The inspi-
ration for this scenario is a rapid-response search mission of
lost mountaineers, thus requiring detailed and gapless map-
ping. The chosen area reaches from the mountains down into
the valleys with height differences of more than 2400m. Its
steep climbs, in some places almost vertical, render simpli-
fied approaches like lawn-mower patterns useless.

From the high-resolution 3Dmap provided by Swisstopo,
a downsampled mesh was derived, containing 657 facets.
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Fig. 5 The left figure depicts a
part of the considered staircase,
both as photo and occupancy
map derived from the recorded
preliminary data of the
VI-sensor. The plots on the right
side show the correlation
between the cost of the obtained
paths and the number of
employed sensors. In all cases,
more sensors improve the
resulting path cost. a Staircase
and derived occupancy map. b
Cost plots
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Table 2 Staircase inspection scenario

N f acets 180 	 incidence 20◦

FoV [120, 120]◦ Mouting pitch 0◦

dmin 0.3m dmax 1.5m

vmax 0.5m/s ψ̇max 0.5 rad/s

This mesh was used to compute a short path that gives full
coverage. Furthermore, it was also used for occlusion and
collision checking in all steps of the computation. The system
under consideration has a minimum turning radius constraint
of 60m, a flight speed of 10m/s and a maximum climb-
and sink-rate of 1m/s. The employed sensor has a FoV of
[120, 120]◦ and is mounted with a relative pitch of 25◦. In
order to ensure good quality of the coverage, the incidence
angle is constrained to 30◦ and the enforced distance lies
between 300 and 400m. This ensures high enough quality
of the recorded sensor data to enable reconstruction of the

inspected landscape in adequate resolution to be used for
victim search or similar tasks. The mission parameters are
summarized in Table 3. The computation lasted for 1916 s,
resulted in an inspection path that has a total cost of 516min
and is depicted in Fig. 7. Obviously, the limit on the climb-
and sink-ratemakes it strenuous to overcome the vast altitude
differences, as they translate tominimally required horizontal
path lengths. However, the computed path takes advantage of
this by covering the mountainside along the way up or down
as highlighted in Fig. 7. This effectively reduces the cost of
the computed path.

Overall, these three very different inspection scenarios
emphasize the versatility of the presented planner with
respect to different mission and system setups. By varying
the mission parameters, the resulting inspection path can be
shaped to suit the mission requirements. This, and the com-
plexity of the presented scenarios, reveal the wide range of
use-cases, where the planner can be employed. Its applica-

Fig. 6 Paths for the staircase scenario have been computed using three
different system setups. The first (left, cost 217.3 s) employs one vision
sensor looking to the front. A second system (middle, cost 185.6 s)
additionally features a sensor looking to the back and the third (right,

cost 150.7 s) also makes use of one sensor to each side, resulting in a
360◦ field of view in horizontal direction. The paths (blue) are plot-
ted together with the mesh used for planning (red) and the viewpoints
(green) each of which is looking at a certain facet (Color figure online)
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Table 3 Jungfrau & Mönch inspection scenario

N f acets 657 	 incidence 30◦

vFW 10m/s rmin 60m

FoV [120, 120]◦ Mouting pitch 25◦

dmin 300m dmax 400m

bility to real world inspection missions is further evaluated
in experimental studies presented in Sects. 6.1 and 6.2.

6 Experimental evaluation

To evaluate the real-life efficiency of the algorithm, a set of
experiments was conducted using both rotorcraft and fixed-
wing UAVs. For each of them, a smaller and a larger-scale
scenario was considered while in all cases the robots were
relying solely on on-board sensor data operating with and
without GPS-support for the fixed-wing and rotorcraft cases
correspondingly. For all conducted experiments, the post-
processed results are available as a public dataset to allow
direct assessment of the quality of the derived results.

6.1 Rotorcraft UAV inspection operations

Extensive experimental studies were conducted using a
highly autonomous MAV system developed around the
AscTec Firefly Hexacopter and the VI-Sensor developed by
our lab and Skybotix AG. The overall system, its hardware
specifications, control properties, perception capabilities and
autonomy levels are briefly overview in Sect. 6.1.1. Subse-

quently, the inspection path planning results are thoroughly
discussed in Sects. 6.1.2 and 6.1.3.

6.1.1 MAV platform overview

As mentioned earlier in this paper, the first employed aerial
robotic platform is built around anAscTecFireflyHexacopter
MAV on-board of which the VI-Sensor developed by our lab
and Skybotix AG is further integrated. The VI-Sensor inte-
grates a stereo camera pair consisting of two HDR global
shutter cameras (Aptina MT9V034) and an Analog Devices
ADIS16448 IMU that are tightly aligned and synchronized
using an ArtixT M -7 FPGA, a Xilinx Zynq 7020 SoC module
and an ATOM CPU running Linux. This integrated sensor
system runs advanced image processing algorithms and in
combination with the employed state estimation algorithms,
it provides accurate and complete pose estimates while it
simultaneously builds a 3D dense reconstruction of the envi-
ronment. Provided the full state estimate feedback, the aerial
robot implements a cascaded trajectory controller consisting
of a linear model predictive control (MPC) on the position
dynamics that provides thrust commands and attitude refer-
ences to the low-level attitude control of the vehicle which
is implemented on-board the AscTec electronics. Figure 8
provides an overview of these loops alongside with a photo
of the vehicle and its computational components.

TheAscTecFireflyHexacopterUAVcomeswith a reliable
factory tuned attitude controller, on top of which a trajec-
tory tracking controller based on MPC (Alexis et al. 2012;
Camacho and Bordons 2003) approach was designed. The
dynamics of the closed loop attitude dynamics (roll and pitch)
have been identified using system identification techniques

Fig. 7 A 33 km2 area in the
Swiss Alps is considered as the
inspection structure. The path
for the employed fixed-wing
system has a total cost of
516min. The left figure depicts
the total considered landscape
area with the computed path on
transformed ENU local
coordinates, while the right side
reveals the monotonously rising
and sinking path. Due to the
large altitude changes of up to
2400m, the solution to the
inspection path planning
problem is dominated by
zig–zagging and circling path
segments. (Source of height
model: Swiss Federal Office of
Topography)
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Fig. 8 The firefly UAV main
software and hardware
components

and are approximated by a first order system. To achieve an
offset-free reference tracking, a disturbance observer based
on a Kalman Filter is designed and tuned to provide external
disturbance estimation d̂ with the assumption that external
disturbances are constant over the prediction horizon. To for-
mulate the receding horizon optimization problem, let the

state vector be x = [
x y z ẋ ẏ ż φ θ

]T
, the control input

vector be u = [
φcmd θcmd Tcmd

]T
and the disturbance vec-

tor be d = [
dx dy dz

]T
, where x , y, z indicates the position

of the hexacopter, φ, θ are roll and pitch angles respectively,
while φcmd , θcmd and Tcmd are the roll command, pitch com-
mand and thrust command respectively. Finally d represents
the external disturbance acting on the hexacopter. Note that
the heading of the vehicle is not considered in the state vector
because an external control loop is used to track the vehi-
cle’s heading. The system is linearized around hover-flight,
and at every time step, the following optimization problem
is solved:

min
ui

N−1∑
i=0

(
xi − xss,i

)T Q
(
xi − xss,i

) + (
ui − uss,i

)T

× Ru
(
ui − uss,i

) + (ui − ui−1)
T Rω (ui − ui−1)

+ (
xN − xss,N

)T P
(
xN − xss,N

)

s.t. xi+1 = Axi + Bui + Bddi
di+1 = di
umin ≤ ui ≤ umax

(11)

where A is the dynamic matrix of the linearized system, B
is the input transfer matrix and Bd is the disturbance trans-
fer matrix, Q,Ru , Rω and P are the state penalty matrix,
input penalty matrix, input change rate penalty matrix and

terminal cost matrix respectively, umin and umax are the
minimum and maximum input vector respectively, xss,i and
uss,i are the controller state and input respectively in steady
state at the time step i . Note that the terminal state penalty
matrix is computed such that P is the solution of the discrete
time Riccati equation to guarantee recursive feasibility of the
receding horizon problem. Finally, it is highlighted that the
aforementioned optimization problem (11) is solved using
the FORCES toolbox interior point solver (Domahidi 2012)
at a rate of 100Hz, by feeding the measured system state x0,
the estimated disturbances d0 = d̂ and the future controller
state and input xss,uss steady state vectors.

6.1.2 Inspection path planning of trolley structure

The first experimental test case refers to the inspection
of the trolley 3D structure depicted in Fig. 9. The con-
sidered mesh model consists of 106 facets capturing the
structure in sufficient detail. To raise the challenge, the over-
all robot workspace is considered to be bounded within a
box 3 × 3 × 2.75m, while a minimum sensing range of
dmin = 1m is imposed. The initial mesh that was used
by the path planner was extracted out of handheld terres-
trial images. Table 4 summarizes the experiment parameters.
Using the proposed inspection path planner, a path that guar-
antees complete coverage was derived and has a total length
of 151.44 s. Reconstruction results were computed from the
fully pose annotated images of the VI-Sensor utilizing the
Pix4D software. The overall reconstruction is of high-quality
which increases confidence on the practical usability of such
distance-optimized paths. The post-processed files can be
found online at (Bircher et al. 2015a). The reference path
and the recorded flight response along with the reconstruc-
tion results are shown in Fig. 9. The arrows indicate the
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Fig. 9 Experimental study of
the inspection of a trolley. The
preliminary, terrestrial
images-based, 3D
reconstruction of the inspection
structure is depicted and was
used to derive a simplified mesh
that was then employed by the
inspection path planner to
compute the inspection path
shown in the Figure. The path
cost is 151.44 s for
vmax = 0.25m/s and
ψ̇max = 0.5 rad/s

Table 4 Rotorcraft UAV inspection scenario trolley

N f acets 106

	 incidence 30◦ Bounding box 3 × 3 × 2.75m

FoV [60, 90]◦ Mouting pitch 15◦

dmin 1m dmax 3m

vmax 0.25m/s ψ̇max 0.5 rad/s

reference viewpoints proposed by the inspection planner. A
video of the recorded result is available at https://youtu.be/
qbwoKFJUm4k.

6.1.3 Inspection path planning of the ETH polyterrasse

The second experimental test-case was that of inspecting a
subset of the ETH Polyterrasse, specifically its extruding
truncated conic structures. This corresponds to a larger-
scale scenariowhich also poses significantlymore challenges
regarding the autonomous operation of the aerial robot and
its capability to self-localize and map its environment. As
far as the inspection path planning problem is concerned, it
was conducted based on a rough CADmodel of four of these
truncated conic structures and an obstacle structure that was
around. This option to derive the mesh of the structure to
be used for path planning was selected due to the fact that
the scene in this case is constructed out of the combination
of rather simple geometric components. To ensure safety, a
minimum distance of 0.5m was imposed to the inspection

structure (Table 5) and 1m to the obstacle. The reference
path, derived in 6.1 s of computation, along with the exper-
imentally recorded flight path of the vehicle on top of the
extracted point cloud are depicted in Fig. 10. As shown—
and can be further validated by loading the files provided as
publicly released point clouds and triangular mesh in Bircher
et al. (2015a)—high quality, very dense reconstruction was
achieved. A video of the recorded result is available at https://
youtu.be/5kI5ppGTcIQ.

6.2 Fixed-wing UAV inspection operations

A second set of experiments was conducted using a long
endurance fixed-wing UAV platform developed by our lab.
The particular platform, AtlantikSolar (Oettershagen et al.
2015), is a 5.6m wingspan, 7.5 kg, solar-powered vehicle.
The overall platform is overviewed in Sect. 6.2.1 and the
relevant inspection path planning results are presented in
Sect. 6.2.3.

6.2.1 Fixed-wing UAV platform overview

The AtlantikSolar UAV (Fig. 11; Table 6) is a hand-
launchable low-altitude long-endurance (LALE)
solar-powered UAV optimized for long-endurance flight. A
detailed overview over the conceptual design of Atlantik-
Solar is given in Oettershagen et al. (2015). The design
methodology is basedon theworks inNoth (2008);Leuteneg-
ger (2014); Oettershagen et al. (2015). The platform owes
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Fig. 10 Experimental study of
the inspection of a subset of the
ETH Polyterrasse truncated
cones. The inspection path was
computed based on a rough
CAD model and the polyhedric
obstacle was also included. The
path cost is 167.3 s for
vmax = 0.25m/s and
ψ̇max = 0.5 rad/s

Table 5 Rotorcraft UAV inspection scenario polyterasse

N f acets 178 	 incidence 30◦

FoV [60, 90]◦ Mouting pitch 20◦

dmin 0.5m dmax 4m

vmax 0.25m/s ψ̇max 0.5 rad/s

much of its configuration to the optimization of power con-
sumption. Lightweight composite materials are used in its
fabrication. The AtlantikSolar prototype UAV features 88
SunPower E60 cells 2.9 kg of cylindrical high energy den-
sity Li-Ion batteries (Panasonic NCR18650b, 243W h kg−1,
700 W h total). The two ailerons, the elevator and the rud-

der are driven by brushless actuators. The propulsion system
consists of a carbon-fiber propeller, a 5:1 reduction gearbox
and a 450 W brushless DC motor.

APixhawkPX4 (Autopilot 2015) thatwas subject tomajor
hardware modifications (e.g. integration of the ADIS16448
IMU and the Sensirion SDP600 differential pressure sensor
as well as re-writing of the estimation and control algorithms
have been performed) is the centerpiece of the avionics sys-
tem. To provide reliable and drift-free long-term autonomous
operation, a light-weight EKF-based state estimator, as pre-
sented in Leutenegger et al. (2014), is implemented on
the autopilot. Robustness against temporal GPS losses is
enhanced through the inclusion of airspeed measurements
from a differential barometer. To increase flight safety, the

Fig. 11 AtlantikSolar system
overview
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Table 6 Summary of AtlantikSolar design and performance character-
istics

Specification Value/unit

Wing span 5.65 m

Mass 7.5 kg

Nominal cruise speed 9.7 m s−1

Max. flight speed 20 m s−1

Min. endurance (no payload)a 13 h

Design endurance (no payload) 10 days

a On battery-power only

algorithm estimates the local three-dimensional wind vector
and employs an internal aircraft aerodynamics model to esti-
mate the current sideslip angle and Angle of Attack (AoA),
which can in turn be used by the flight controller to apply
implicit flight regime limits (Oettershagen et al. 2014).

Subject to the availability of the aforementioned accurate
state estimates, AtlantikSolar’s flight control system fea-
tures automatic tracking of waypoints. The baseline control
is a set of cascaded PID-controllers for inner-loop atti-
tude control (Stevens and Lewis 1992). Output limiters are
applied to respect the aircraft flight envelope, dynamic pres-
sure scaling of the control outputs is used to adapt to the
changing moment generation as a function of airspeed and
a coordinated-turn controller allows precise turning. Alti-
tude control is based on a Total Energy Control System.
Waypoint-following is performed using an extended version
of the L1-nonlinear guidance logic (Park et al. 2004). The
detailed implementation and verification of our autopilot is
described in Oettershagen et al. (2015).

The AtlantikSolar UAV integrates a sensor pod (see
Fig. 12) which features a grayscale (Aptina MT9V034)
camera with a long-wavelength infrared (LWIR) camera
(FLIR Tau 2) for thermal imaging, both mounted with an
oblique FoV. An IMU (Analaog Devices ADIS16448) is

also included. All sensors are integrated with a Skybotix
VI-Sensor (Skybotix), allowing tight hardware synchro-
nization and timestamping of the acquired data (Nikolic
et al. 2014). Furthermore, an Intel Atom-based embedded
computer (KontronCOMe-mBT10) is interfacedwith theVI-
Sensor and the PX4 autopilot. The on-board Atom computer
further communicates with the PX4 in order to receive its
data, and transmit waypoints. The acquired data is processed
on-board and communication with the ground control station
is achieved over Wi-Fi. In combination with this sensor pod,
an of-the-shelf Sony HDR-AS100VW camera is also uti-
lized. Within the framework of the experiments conducted in
this study, the grayscale camera of the sensor pod (with pose
annotations coming from the overall state estimation pipeline
of the UAV) and the Sony camera (with position annotations
coming from its integrated GPS) are employed. The data of
these visible light cameras are combined with the pose esti-
mates and fed to post-processing software (Pix4D) to derive
accurate 3D reconstructions of the environment.

6.2.2 Inspection path planning for the Marche-en-Famenne
field-trials

AtlanikSolar is an integral component of the large-scale
ICARUS project on assisted search-and-rescue. Within that
framework, this UAV participated during autumn 2014 in the
field-trials event atMarche-en-Famenne,Belgium(ICARUS)
with the role of large-scale mapping, long-term monitoring
and communications relay. Geographical Information Sys-
tem (GIS) data were used to derive a first, rough, 8 facets
(N f acets = 8) mesh of the area and subsequently two inspec-
tion paths were computed, one for the oblique view grayscale
camera of the VI-Sensor with a fixed reference altitude set at
an absolute value zr = 362m (corresponding to 120m above
the highest point to be inspected) and the other for the nadir-
mounted Sony HDR-AS100VW with zr = 342m, while the

Fig. 12 The AtlantikSolar
UAV with the sensor pod
attached to its wings and further
photos of the sensor pod, the
solar cells and an instant of the
hand-launching
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Table 7 Marche-en-Famenne Inspection Scenario

N f acets 8, 8 	 incidence 30◦

vFW 9m/s rmin 60, 60m

FoV [90, 50]◦, [120, 120]◦ Mouting pitch 50◦, 90◦

Range Unconstrained Height 120, 100m

modeled minimum turning radius was rmin = 60m. Table 7
summarizes the parameters used for the two experiments.

Using the Pix4D software in combination with full-pose
annotated images from the two camera systems, highly dense
reconstructions were computed as shown in Figs. 13 and 14
for the oblique and the nadir view camera correspondingly.
In both cases, the optimized reference inspection path, the
real recorded UAV trajectory as well as an offline computed
dense point cloud of the inspection area are shown such
that the completeness of coverage is visually assessed. A

video of the recorded result is available at https://youtu.be/
qbwoKFJUm4k.

For both configurations, the proposed inspection planner
manages to provide short distance paths that guarantee com-
plete coverage while accounting for the motion constraints
of the fixed-wing UAV.

6.2.3 Inspection path planning for the Rothenthurm Moor
landscape

The final inspection path planning problem considered was
that of the 3Dmapping of themoor landscape area of Rothen-
thurm in the Schwyz district of Switzerland. Once again,
GIS data was employed to extract a first rough mesh of
the environment (consisting of Nnadir

f acets = 19 facets and

Noblique
f acets = 31 facets) and subsequently, inspection paths

were computed for both the nadir- and oblique-camera con-
figurations of the AtlantikSolar UAV. While the altitude

Fig. 13 Inspection path and
point cloud for 3D
reconstruction purposes using
the front-down mounted view
grayscale camera of the
VI-Sensor on-board
AtlantikSolar. Blue line
represents the reference path,
green circles are used to indicate
the actual waypoints loaded to
the autopilot and red is used for
the vehicle response. The
planner commands the vehicle
to navigate such that the camera
covers the whole desired area
marked with dashed cyan line. A
UTM31N coordinate system is
employed (Color figure online)

Fig. 14 Inspection path and 3D
reconstruction results using the
nadir mounted Sony
HDR-AS100VW on-board
AtlantikSolar. Blue line
represents the reference path,
green circles are used to
indicate the actual waypoints
loaded to the autopilot and red
is used for the vehicle response.
The planner commands the
vehicle to navigate such that the
camera covers the whole desired
area marked with dashed cyan
line. A UTM31N coordinate
system is employed (Color
figure online)
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Table 8 Rothenthurm Moor
landscape inspection scenario

N f acets 31, 19 	 incidence 30◦, 45◦

vFW 9m/s rmin 60, 60m

FoV [90, 50]◦, [120, 120]◦ Mouting pitch 50◦, 90◦

Range Unconstrained Height [150, 170], [110, 130]m

Fig. 15 Inspection path and
point cloud for 3D
reconstruction purposes using
the front-down mounted view
grayscale camera of the
VI-Sensor on-board
AtlantikSolar. Blue line
represents the reference path
that was computed within 145 s
and fed as a reference to the
autopilot via a very sparse
sampling and red is used for the
vehicle response. The planner
commands the vehicle to
navigate such that the camera
covers the whole desired area
marked with dashed cyan line. A
UTM31N coordinate system is
employed (Color figure online)

Fig. 16 Inspection path and
point cloud for 3D
reconstruction purposes using
the nadir mounted Sony
HDR-AS100VW on-board
AtlantikSolar. Blue line
represents the reference path
that was computed within 51 s
and fed as a reference to the
autopilot via a very sparse
sampling and red is used for the
vehicle response. The planner
commands the vehicle to
navigate such that the camera
covers the whole desired area
marked with dashed cyan line. A
UTM31N coordinate system is
employed (Color figure online)

change of the landscape is 15m from the lowest to the high-
est point, the relative altitude of the UAV with respect to
the highest point is constrained by zr = [150, 170]m for
the case of the nadir-view camera. Similarly, relative alti-
tude bounds of zr = [110, 130]m were set for the case of
the oblique-view camera. Table 8 summarizes the mission
parameters. Once again, using the Pix4D software with the
full-pose annotated images from the two camera systems,
very dense reconstructions in the form of point clouds, tri-
angular meshes and digital surface maps were derived and
can be found in the public dataset in Bircher et al. (2015a).

Figures 15 and 16 present the reference and recorded flight
paths on top of the derived point clouds for the case of the
oblique- and nadir-view cameras correspondingly. A video
with a segment of the flight relevant to this mission is avail-
able at https://youtu.be/DDu5rHYCDkg.

7 Code and dataset release

Enhancing this publication, an open-source toolbox and a
richful dataset are available. More specifically, the code
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release can be found online at Bircher and Alexis (2015)
(available and continuously updated) and once compiled,
provides a ROS interface to run the proposed structural
inspection path planning algorithm. The released toolbox
considers the world as modelled via a triangular mesh,
supports both holonomic as well as nonholonomic aerial
robots and contains a short set of tuning parameters. Instal-
lation instructions, explanation of the parameters as well as
the interface, instructions of usage and visualization along-
side with demo scenarios, example experimental results and
guidelines for further development are provided within the
wiki page of the online repository.

Furthermore, a continuously updated dataset can be found
online (Bircher et al. 2015a). This contains the results pre-
sented in the previous Sections while it gets continuously
updated over time. All datasets contain dense point clouds
derived using the proposed autonomous inspection plan-
ner for the flight path, a camera system and the Pix4D
software (Pix4D) for post-processing of the pose-annotated
images. The point clouds and the 3D-triangular meshes are
saved in .PLY format and one may load them with any rele-
vant software. Furthermore, for the case of the AtlantikSolar
UAV test-flights equipped with the Sony HDR-AS100VW
camera orthophoto data along with Google Earth KML files
are provided.

8 Conclusions

A new and efficient 3D structural inspection path planning
algorithm was proposed within this work. The algorithm is
capable of computing optimized paths for both holonomic
and nonholonomic vehicles and supports multiple cameras
while respecting further mission constraints. The proposed
strategy was thoroughly evaluated regarding its capacity to
handle complex and large-scale 3D structures. Employing
two different aerial robots, a rotorcraft aswell as a fixed-wing
vehicle, the algorithm was practically tested in four different
scenarios relevant with both holonomic and nonholonomic
configurations, nadir- and oblique-camera views for close-
proximity as well as large-scale 3D mapping applications.
With the support of state-of-the-art 3D reconstruction soft-
ware, the recorded inspection data were postprocessed and
as shown practical full coverage, very dense and high-quality
point clouds and triangular meshes were derived. The imple-
mentation of the proposed algorithm is publicly released
and can be found at the— continuously updated—repository
inBircher andAlexis (2015)while the postprocessed data are
available at Bircher et al. (2015a). Future work may include
extension tomoveable cameraswithmultiple degrees of free-
dom as well as planning for multi-agent inspection tasks.
Furthermore, we believe that it is promising to investigate
methods that potentially allow the arrival to better solutions

(e.g. using simulated annealing concepts for the viewpoint re-
sampling) as well as to combine such a global planner with
local, on-line reactive exploration planners that can deal with
model uncertainty or serious deviations from the nominal tra-
jectory.

Acknowledgments This work has received funding from the Euro-
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Uniform Coverage Structural Inspection Path–Planning for Micro

Aerial Vehicles

Kostas Alexis1, Christos Papachristos2, Roland Siegwart2 and Anthony Tzes2

Abstract— This work proposes a new path–planning frame-
work that provides uniform coverage of 3D structures by
employing an iterative strategy to improve the inspection path
that benefits from remeshing–techniques, while the first full
solution is computed very fast. The resulting paths inspect each
detail of the structure from a distance that directly depends to
the local geometrical complexity of the structure and viewpoints
are selected accordingly. For each admissible set of viewpoints,
a Traveling Salesman Problem is solved and leads to the
inspection route that the algorithm outputs at each iteration.
The proposed path–planning algorithm is initially evaluated in
extensive simulation studies. Finally, an experimental case study
using a Micro Aerial Vehicle and a realistic mockup model of
a power transformer is conducted, validating the advantages of
the proposed scheme in conducting fine-quality inspection.

I. INTRODUCTION

Aerial robotics are constantly proving their potential and

their capabilities to assist in a large variety of civilian ap-

plications of great importance. Among others, the emerging

field of autonomous aerial structural inspection is gaining

significant interest as aerial robots can provide new, unique,

high–fidelity, versatile and cost–effective alternatives to the

so–far achieved state of the art that relies on manned systems.

Examples already include efforts for automated infrastructure

inspection using Micro Aerial Vehicles (MAVs) [1] such as

bridge monitoring or risk detection in boiler power plants

using cameras [2] or nondestructive testing [3, 4].

However, despite the interest that this field has attracted,

important challenges still have to be addressed. From an

applications perspective, there is a clear need for fast com-

putation of inspection paths that provide full coverage of

the desired structure, pay sufficient focus on its details and

are in general of short length. As inspection operations

requirements are complex, end–users naturally demand to

be able to control the level of inspection fidelity according

to the initial knowledge, the geometry of the structure or the

time available for the execution of a mission.

Within the literature, two main families of 3D inspection

path planning algorithms may be identified [5, 6], namely

those that: a) separate the problem into that of finding

a (possibly minimal) set of viewpoints and then compute

an optimal route among them [7] and b) those that aim

This work has received funding from the European Union’s Horizon
2020 Research and Innovation Programme under the Grant Agreement No.
644128, AEROWORKS.

1The authors are with the Autonomous Systems Lab at ETH
Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland. email: konstanti-
nos.alexis@mavt.ethz.ch

2The authors are with the University of Patras, Eratosthenous 6 Str.
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to optimize the viewpoint configurations and the overall

path in a unified step [8]. In general, methods that follow

the separated approach are characterized by lower compu-

tational complexity while the second category emphasizes

on optimality at the cost of increased computational times.

Previous work of a subset of the authors aimed to make a

step towards iteratively optimized solutions that retain a low

computational load [1].

Fig. 1: Indicative experimental application of the proposed algo-
rithm employing a micro aerial vehicle, for the case of a power
transformer mockup.

The focus of this work is put on a very different direction,

and its goal is not limited to that of finding full coverage

paths with short distance. Motivated from application needs,

the proposed Uniform Coverage 3D structure Inspection

Path–Planner (UC3D–IPP) rather tries to: a) compute view-

points that provide full coverage but also uniform focus

into each detail of the structure by adjusting the perception

distance and orientation, b) compute the first almost uniform

coverage paths very fast and with scalable processing re-

quirements, c) employ an iterative framework that makes use

of a set of geometrical rules to improve coverage uniformity

while keeping the amount of viewpoints small and the path

short, while finally d) allows to define the minimum accept-

able inspection detail and levels of uniformity. To achieve

these goals, the framework benefits from the properties of

mesh representations of the 3D structure on which it uses

remeshing techniques, while the distance of each viewpoint

from the corresponding mesh face is a function of the

local complexity of the structure. Once an admissible set

2015 IEEE International Symposium on Intelligent Control (ISIC)
Part of 2015 IEEE Multi-Conference on Systems and Control
September 21-23, 2015. Sydney, Australia

978-1-4799-7788-8/15/$31.00 ©2015 IEEE 59



of viewpoints is chosen, the optimal route among them

is computed by solving a Traveling Salesman Problem

employing the efficient Lin–Kerninghan–Helsgaun heuristic.

The algorithm initializes with a downsampled version of the

mesh to find a first solution and subsequently higher fidelity

meshes are loaded, more viewpoints are added and new

inspection routes are computed. The overall framework was

tested in multiple simulation and experimental test–cases and

Figure 1 illustrates the algorithm’s experimental application

employing a micro aerial robotic system. Jointly with this

paper, a dataset is released and is available in [9] and contains

additional evaluation studies while it will be further updated

and maintained in the future.

The remainder of the paper is organized as follows. In

Section II the methods to represent the 3D structure are

discussed followed by the description of the basic version

of UC3D–IPP in Section III. The iterative UC3D–IPP is

presented in Section IV and some heuristical adaptations are

introduced in Section V. Simulation evaluation studies are

presented in Section VI followed by experimental studies in

Section VII. Finally, conclusions are drawn in Section VIII.

II. REPRESENTATION OF 3D STRUCTURES FOR

INSPECTION PATH–PLANNING

The selection of the representation method of the 3D struc-

ture has a key role in the implementation of any inspection

path–planner. Within this work, the representation of the

structure is fundamental for some of the algorithm main

capabilities. More specifically, uniform triangular meshes are

employed to represent the 3D structure model for which a

full coverage inspection path is planned. The initial mesh

representation of the structure to be inspected is processed

using the generic remeshing algorithm proposed in [10] while

iterative reduction steps follow. Figures 2 and 3 provide

example results of this remeshing strategy applied on models

relevant to structural inspection path–planning. Specifically,

the effect of heavy resampling steps applied in the case of

the model of an industrial chimney and a model of the Hoa

Hakananai’a statue are considered.

III. UNIFORM COVERAGE PATH-PLANNING

The specific focus of the Uniform Coverage 3D structure

Inspection Path–Planner (UC3D–IPP) is to provide a frame-

work which computes inspection paths that a) provide full

coverage of the desired structure and b) the inspection dis-

tances are a function of the structural fidelity and complexity

per subset of the inspection manifold so that uniformity

in 3D reconstruction tasks is more probable. The proposed

framework provides first inspection paths extremely fast

(and with controllable level of computational load) while it

employs an iterative framework to improve the solution or

consider parts of the structural information lost during the

mesh downsampling process. The minimum desired focus

on the structural details can be initially set by providing

the most downsampled mesh model to be considered. The

envisaged use of the algorithm is both in the sense of long–

term offline planning of high–fidelity inspections as well as

(a)
(b)

Fig. 2: Initial model of an industrial chimney (141388 vertices
and 275964 faces) and a subsequent step of 25% reduction of the
number of vertices using the employed model resampling technique.

(a)
(b)

Fig. 3: Initial model of the Hoa Hakananai’a statue (63223 vertices
and 126446 faces) and a subsequent step of 25% reduction of the
number of vertices using the employed model resampling technique.

close to real–time inspection path–planning in the field. For

the latter case, the capability of the algorithm to provide its

first solution very fast is fundamental.

A. Basic UC3D–IPP

This section deals with the explanation of the basic

UC3D–IPP. With the term basic we refer to the fundamental

algorithmical block that computes uniform coverage paths

against a given mesh of a structure which might not be the

actual structure model but rather a downsampled version

of its mesh representation. Derivation of such simplified

versions can be acquired by utilizing the mesh resampling

techniques described in Section II.

Let Gi,Fi be the set of all vertices υj and faces fj of

a specific mesh model and Γ = [φC , θC , ψC ] and Π =
[∆xC ,∆yC ,∆zC ] the camera mounting configuration in

terms of rotation and position deviation from the vehicle

center of mass. Then the basic UC3D–IPP follows the steps
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described in Algorithm 1. Within that – and from now on –

V represents the set of computed viewpoints.

Algorithm 1 Basic UC3D–IPP Inspection path planner: The

computation of the viewpoints is done according to the

description in section III-A.2 and for the computation of the

tour an implementation of the Lin-Kernighan Heuristic [11]

is employed.

P ← ExtractPolygons(Gi,Fi)
for all pk ∈ P do

vk ← ComputeViewpoint(pk,Γ,Π)
V ← V ∪ vk

for all vn ∈ V do

for all vm ∈ V do

C(n,m)← ConnectionDistance(vn,vm)

ri ← ComputeViewpointsRoute(C(n,m))
return ri

The execution of this algorithm relies on the

functions ExtractPolygons(), ComputeViewpoint(),
ConnectionDistance() and ComputeViewpointsRoute()
which are described in the following subsections.

1) Mesh Faces Polygon Extraction: The function

ExtractPolygons() executes the operation of extracting the

polygons that correspond to the triangular faces of the model.

2) Viewpoint Configuration Computation: Viewpoint

computation per mesh face is done based on pure geometric

calculations. The complete procedure consists of three main

and one optional step, namely: a) loading of the baseline

camera viewing polyhedron model, b) rotation and trans-

lation of this polyhedron based on the mounting config-

uration of the camera (φC , θC , ψC and ∆xC ,∆yC ,∆zC)

and finally c) translational move and corresponding enlarge-

ment/downsizing of this polyhedron so that the mesh facet

becomes at least exactly visible (either exactly or based on a

minimum allowed viewing distance). In case, the mesh face

is big enough, so that the maximum viewing distance is vio-

lated during this process, then it is divided into two smaller

faces and two viewpoint configurations are computed. This

process may be repeated until valid viewpoints are found.

3) Viewpoint–to–Viewpoint Connecting Distance Compu-

tation: The computation of the connecting paths and corre-

sponding distances among the different viewpoints that have

to be visited is done via the combination of a Boundary

Value Solver (BVS) for the considered vehicle dynamics

with a collision–free point–to–point path–planner that em-

ploys the RRT⋆ algorithm [12] and executes a finite NRRT

number of iterations of it. The overall procedure that leads

to collision–free connections between each viewpoint with

all the others is summarized in Algorithm 2. Within that,

BVST () represents the boundary value solver for the vehicle

configuration T which may be holonomic or nonholonomic.

Similarly, the function RRT⋆
T denotes the execution of an

RRT⋆ planner that implements ray–checking for collisions

against the mesh represented by the vertices and faces sets

V ,F and may account for possible nonholonomic limita-

tions in terms of minimum turning radius and maximum

ascending/descending rates. Regarding the employed BVS it

is noted that within this paper only holonomic assumptions

are considered (for example for rotorcraft–type MAVs like

quadrotors, hexacopters or conventional helicopters) aug-

mented with yaw rate constraints.

Algorithm 2 Computation of the connecting path between

the viewpoint configuration vn and vm.

pvn→vm
← BVST (vn,vm)

if CheckCollision(pvn→vm
,V ,F ) == TRUE then

pvn→vm
← RRT⋆

T (vn,vm,V ,F , NRRT )

return pvn→vm

4) Complete Viewpoints Visiting Route Computation:

Once the complete set of viewpoint configurations V has

been found, the computation of the optimal inspection route

that visits all of them and returns to the initial position

corresponds to the solution of the Traveling Salesman Prob-

lem (TSP) with graph vertices the selected viewpoints and

edges that correspond to the cost–to–go of each viewpoint–

to–viewpoint connection. In order to enable fast computation

of such a solution, the function ComputeViewpointsRoute()
employs an efficient implementation of the Lin–Kernighan–

Helsgaun (LKH) heuristic [11, 13]. It is known that local

search with k–change neighborhoods, k–opt as it is called,

is one of the most widely used heuristic algorithms to solve

TSP.

IV. ITERATIVE UC3D–IPP

As mentioned, among the main goals of this work is to

provide an inspection path–planning framework that has the

capacity to provide uniform solutions for the provided mesh

model and is able to iterate and improve the solution as

long as this first solution –based on a more rough mesh

model– is not considered sufficient and mission time is

available. Towards this direction, the algorithm can itera-

tively load improved –higher fidelity– mesh models and

not fully recompute a path (as the basic UC3D–IPP) but

modify the existing by adding a new set of viewpoints that

will lead to an almost equally uniform coverage based on

the updated mesh model. This advanced Iterative Uniform

Coverage 3D structure Inspection Path–Planner implements

the additional functionality depicted in Algorithm 3 once a

first step of the basic UC3D–IPP has executed and has found

its initial solution with viewpoint configurations Vbasic.

Implementation of the iterative UC3D–IPP relies on the

newly introduced function IsCoveredUniformly(). For each

triangular face of the new and higher–fidelity mesh, this

function performs three main steps, namely: a) computes the

inspection polyhedron of each viewpoint, b) checks if any

of the existing viewpoint configurations provides coverage

of this face and if so c) checks if the inspection distance

is around the value (with a tunable threshold) it should be

if the viewpoint configuration was computed initially using

ComputeViewpoint(). If any of the results of this test is
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Algorithm 3 Itarative UC3D–IPP Inspection path planner:

New viewpoints are added on top of the basic UC3D–IPP

solution as long as faces of the higher fidelity mesh are not

covered or covered from distances that exceed a threshold of

uniformity. Subsequently, a new inspection route is solved

employing the LKH–heuristic. Within this algorithm, V i

represents the set of computed viewpoints within the i–th

iteration of iterative the UC3D–IPP and Vbasic refers to the

last computed set of viewpoints of the basic UC3D–IPP.

V i−1 ← Vbasic

V i ← V i−1

Pi ← ExtractPolygons(Gi,Fi)
for all pk,i ∈ Pi do

if IsCoveredUniformly(pk,i,V
i−1) == FALSE then

vk,i ← ComputeViewpoint(pk,i)
V i ← V i ∪ vk,i

for all vn ∈ V
i do

for all vm ∈ V
i do

C(n,m)← ConnectionDistance(vn,vm)

ri ← ComputeViewpointsRoute(C(n,m))
return ri

negative, then a new viewpoint is computed and added to

the set of viewpoints corresponding to this algorithmical

iteration V i, while otherwise the set of viewpoints is not

updated. Once any new viewpoint configurations that ensure

that the new mesh model is fully and uniformly covered,

a new optimal route that visits all the updated viewpoint

configurations is computed using the LKH heuristic.

V. COLLISION CHECKING SPEED–UP

As it will be revealed within Section VI, collision checking

is among the most computationally expensive procedures

within the UC3D–IPP algorithm. This is due to the fact

that every possible connecting edge of the tour has to be

evaluated in order to assess if it leads to a collision with

any of the mesh faces. Simple heuristic approximations

allow faster collision–checking while guaranteeing safety.

This is specifically done by replacing the mesh vertices

and faces used for collision checking with those derived

by computing the convex hull of a slightly magnified mesh

which is then heavily simplified. Apart from magnification

of the employed mesh, utilization of bounding boxes to

approximate complex structures like construction networks

can also have significant impact.

VI. EVALUATION STUDIES IN SIMULATION

Thorough evaluation of the proposed inspection path–

planning framework was conducted for the case of an

aerial robot capable of flying holonomic trajectories. The

aforementioned 3D structure mesh models were employed

as test–cases and several simulation runs were executed. In

particular, the performance of the algorithm being executed

on meshes with different levels of fidelity along with the

performance of the iterative improvement steps and the

(a)

(b)

Fig. 4: Two executions of the basic UC3D–IPP algorithm for a
more and a less simplified version of the industrial chimney mesh
model consisting of (234 vertices, 460 faces) and (1415 vertices,
2730 faces) respectively.

heuristic adaptations was evaluated. The results are presented

below and as shown the UC3D–IPP does provide fast so-

lutions that ensure uniform coverage for the given initial

mesh models and an almost uniform, iteratively improved,

coverage given that more computation time is available.

Jointly with this publication, a dataset is released and is

available in [9]. It contains additional evaluation studies and

will be continuously updated and maintained.

A. Results using the basic UC3D–IPP

Considering the industrial chimney and Hoa Hakananai’a

models presented in section II, two executions of the basic

UC3D–IPP were ran for different levels of simplification of

the initial mesh model. The inspection results are presented

in Figures 4, 5. For all these cases, a field of view equal

to 40 degrees in both directions was considered along

with a mounting configuration of Γ = [0,−12, 0]deg and

Π = [0, 0, 0]m. The number of RRT ⋆ iterations is set

to NRRT = 500 while for these simulations none of the

heuristics mentioned in Section V were employed. Observing

the computation load analysis shown in Figure 6 indicates

that the total time needed is short and for rough represen-

tations it only takes a few seconds to come up with a first

solution. As further analyzed in Figure 6, the component that

consumes most of the time is actually the assembly of the

cost matrix as during that, the collision checking against each

and every facet of the mesh (or other possible obstacles of

the environment) has to take place.

B. Results using the Iterative UC3D–IPP

As described in Section IV, the iterative adaptation of

the proposed uniform inspection path–planner can improve

the solution by loading higher fidelity mesh models and

additively inserting new sets of viewpoints that “refine and

repair” the path leading to an almost equally uniform cov-

erage now based on the updated and more detailed mesh
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(a) (b)

Fig. 5: Two executions of the basic UC3D algorithm for a more
and a less simplified version of the HoA-Hakananai’a mesh model
consisting of (61 vertices, 118 faces) and (987 vertices, 1970 faces)
respectively.
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Fig. 6: Analysis of the computational needs of each of the fun-
damental basic–UC3D algorithm. As shown the overall execution
time is small even for meshes of significant complexity while the
most expensive operation is the assembly of the cost–matrix which
contains checking for collisions and replanning using RRT⋆ as long
as the direct solution of the BVS turns out not to be collision–free.

model. The new added viewpoints at each iteration either

“fill the gaps” by providing coverage for structural details

lost in previous steps of mesh simplification or improve

the uniformity of coverage in case a significant deviation

from the expected inspection distance is observed. This

iterative version of the algorithm was evaluated in simulation

studies. The model of the industrial chimney is employed and

Figure 7 presents the initial and the two subsequent improved

paths. As highlighted in Figure 8, the iteratively found

solutions are computed with a relatively small additional

computation overhead and the cost of less uniform solution

comes with the benefit of a solution that is computed faster

compared with the case that the updated mesh models would

be used directly with the basic UC3D–IPP.

VII. EXPERIMENTAL STUDIES

The proposed UC3D–IPP algorithm was additionally eval-

uated experimentally for the case of a power–transformer

structure. A realistically-sized mockup model of an actual

power transformer was used, while the execution of the

inspection process was performed by an aerial robot capable

of autonomous perception of its environment, estimation of

(a) (b)

Fig. 7: Initial execution of the basic–UC3D on a highly simplified
mesh and a subsequent execution of the iterative–UC3D for a
mesh model of much higher fidelity. As shown, only a few extra
viewpoints were needed and the solution is sufficiently simpler than
the execution of the basic–UC3D on the more complex mesh.
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Fig. 8: Execution time for the basic–UC3D on the more rough and
simplified mesh (427 vertices, 840 faces) and execution time of the
path–improving iterative–UC3D for the more complex and higher–
fidelity mesh model (1415 vertices, 2730 faces) with a setting
of 20% acceptable deviation of the expected uniform inspection
distance. Only a small increase in execution time is observed.

its motion and navigation [14–17], and equipped with an on-

board RGB−D image and depth sensor. More specifically,

the utilized platform is a quadrotor UAV with a protective

outer frame (for safety in case of contact when in very

short range to its surroundings), custom–developed for the

purposes of autonomous aerial structural inspection.

In particular, the mesh model of a power transformer

mock–up structure swas employed by the UC3D–IPP algo-

rithm. For the executed path it was greatly downsampled to

a version of 69 vertices and 134 faces and the computed path

is shown in Figure 9. The same Figure further illustrates the

recorded flight path which indicates the overall good tracking

bahavior of the system. It is noted, that the computed path

was conducted as a trajectory with average linear velocity

vt = 0.5m/s. For the computation of the inspection path,

the camera mounting configuration Γ = [0,−15, 0]deg,

Π = [0.075, 0, 0.025]m and a minimum inspection distance

of 0.35m were considered.
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Fig. 9: The uniform coverage inspection path for the case of
the power transformer mockup structure and the experimentally
recorded flight path using an advanced aerial robotic system
equipped with the Kinect RGB-D sensor: i) Model mesh, and ii)
extracted dense Point Cloud, illustrate good reconstruction corre-
spondence.

The quality of the inspection path was evaluated using

3D reconstruction techniques using the VGA–quality video

footage of the Kinect camera. Despite the low resolution

of the camera, the reconstruction depicts that the achieved

inspection quality is very high. Details of the structure are

clearly visible, and even the texture of the surface –which

holds major importance in inspection operations– is clearly

discernable. The dense pointcoud and reconstructed mesh of

the power transformer mockup are available in the dataset

that is jointly released with this paper [9], while part of the

on–board video footage can be found in the following url:

https://youtu.be/Gg9qsF3y8IU

VIII. CONCLUSIONS

A new algorithm for 3D structural inspection path–

planning was proposed and presented within this paper. The

UC3D–IPP method provides full coverage of the 3D structure

as modeled by a mesh and ensures uniform (or almost

uniform) focus on the geometrical details by appropriately

selecting the inspection distance. It provides a framework

that computes first solutions extremely fast at the cost of

relying on slightly more rough models derived using state–

of–the–art mesh simplification techniques. However, as long

as more computational time is available, UC3D–IPP will

provide new and improved solutions either via a completely

new calculation or via a fast iterative strategy that still

guarantees full coverage with a small/tunable deviation from

inspection distance uniformity. Extensive simulations and

experimental evaluation studies using an aerial robot were

employed to validate the concepts of the algorithm and

showcase its capabilities.
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