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Autonomous Robot Challenges

How do I move?
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The Micro Aerial Vehicle propeller

 Simplified model forces and moments:

 Thrust Force: the resultant of the vertical forces acting on

all the blade elements.

 Hub Force: the resultant of all the horizontal forces acting

on all the blade elements.

 Drag Moment: This moment about the rotor shaft is

caused by the aerodynamic forces acting on the blade

elements. The horizontal forces acting on the rotor are

multiplied by the moment arm and integrated over the

rotor. Drag moment determines the power required to

spin the rotor.



The wheel of a small ground robot

 Circular Motion – Rotational Formulas

 Angular Velocity

 Angular Velocity and Acceleration

 Angular Displacement

 Angular Acceleration

 Angular Momentum or Torque

 ω = angular velocity

 θ = angular position

 r = radius of the wheel

 a = angular acceleration

 Jw = moment inertia

 T = angular momentum 
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Coordinate Frames

 In Guidance, Navigation and Control of aerial robots,
reference coordinate frames are fundamental.

 Describe the relative position and orientation of:

 Aerial Robot relative to the Inertial Frame

 On-board Camera relative to the Aerial Robot body

 Aerial Robot relative to Wind Direction

 Some expressions are easier to formulate in specific
frames:

 Newton’s law

 Aerial Robot Attitude

 Aerodynamic forces/moments

 Inertial Sensor data

 GPS coordinates

 Camera frames



Rotation of Reference Frame

 Rotation around the k-axis



Rotation of Reference Frame

 Rotation around the i-axis

 Rotation around the j-axis

 Rotation around the k-axis  Orthonormal matrix properties









Vehicle-1 Frame

 ψ represents the yaw angle



Vehicle-2 Frame

 θ represents the pitch angle



Body Frame

 φ represents the roll angle



Inertial Frame to Body Frame

 Let:

 Then:



Relate Translational Velocity-Position

 Let [u,v,w] represent the body linear velocities

 Which gives:



Body Rates – Euler Rates

 Let [p,q,r] denote the body angular rates

 Inverting this expression:
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MAV Dynamics

What is the relation between the 

propeller aerodynamic forces 

and moments, the gravity force 

and the motion of the aerial 

robot?



MAV Dynamics

 Assumption 1: the Micro Aerial Vehicle is flying as a

rigid body with negligible aerodynamic effects on it –

for the employed airspeeds.

 The propeller is considered as a simple propeller disc

that generates thrust and a moment around its shaft.

 Recall:

 And let us write:



MAV Dynamics

 Recall the kinematic equations:

 Translational Kinematic Expression:

 Rotational Kinematic Expression



MAV Dynamics
 To append the forces and moments we need to

combine their formulation with

 Next step: append the MAV forces

and moments



MAV Dynamics

 MAV forces in the body frame:

 Moments in the body frame:



Autonomous Robot Challenges

Where am I?

What is my 

environment?
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Navigation Sensors

 Providing the capacity to estimate the state of the aerial robot

 Self-Localize and estimate its pose in the environment

 Often this requires to also derive the map of the environment

 In some cases also rely in external systems (e.g. GPS), while a lot of work is

undergoing into making aerial robots completely autonomous.



Classification of Sensors

 What:

 Proprioceptive sensors

 Measure values internally to the robot.

 Angular rate, heading.

 Exteroceptive sensors

 Information from the robot environment

 Distances to objects, extraction of features from the environment.

 How:

 Passive Sensors

 Measure energy coming from a signal of the environment – very much influenced from the
environment.

 Active Sensors

 Emit their proper energy and measure reaction.

 Better performance, but some influence on the environment.

 Not always easily applicable concept.



Uncertainty Representation

 Sensing is always related to uncertainties

 How can uncertainty be represented or quantified?

 How do they propagate – uncertainty of a function of uncertain values?

 Systematic errors

 They are caused by factors or processes that can in theory be modeled and, thus,

calibrated, (for example the misalignment of a 3-axes accelerometer)

 Random errors

 They cannot be predicted using a sophisticated model but can only be described

in probabilistic terms



Typical Navigation Sensors

 The following sensors are commonly used for the navigation of aerial robots:

 Inertial Sensors:

 Accelerometers

 Gyroscopes

 Magnetometers (digital compass)

 Pressure Sensors

 Barometric pressure for altitude sensing

 Airspeed measurements

 GPS

 Camera based systems

 Time-of-Flight sensors



World state (or system state)

 Belief state:

 Our belief/estimate of the world state

 World state:

 Real state of the robot in the real world

Parts of this talk are inspired from the edX lecture “Autonomous Navigation for Flying Robots” from TUM
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Probability theory

 Random experiment that can produce a number of outcomes, e.g. a rolling

dice.

 Sample space, e.g.: {1,2,3,4,5,6}

 Event A is subset of outcomes, e.g. {1,3,5}

 Probability P(A), e.g. P(A)=0.5



Axioms of Probability theory









Discrete Random Variables

 X denotes a random variable

 X can take on a countable number of values in {x1,x2,…,xn}

 P(X=xi) is the probability that the random variable X takes on value xi

 P(.) is called the probability mass function

 Example: P(Room)=<0.6,0.3,0.06,0.03>, Room one of the office, corridor, lab,

kitchen



Continuous Random Variables

 X takes on continuous values.

 P(X=x) or P(x) is called the probability density function (PDF).

 Example:

Thrun, Burgard, Fox, “Probabilistic
Robotics”, MIT Press, 2005



Proper Distributions Sum To One

 Discrete Case

 Continuous Case



Joint and Conditional Probabilities



 If X and Y are independent then:

 Is the probability of x given y

 If X and Y are independent then:



Conditional Independence

 Definition of conditional independence:

 Equivalent to:

 Note: this does not necessarily mean that:



Marginalization

 Discrete case:

 Continuous case:



Marginalization example



Expected value of a Random Variable

 Discrete case:

 Continuous case:

 The expected value is the weighted average of all values a random variable

can take on.

 Expectation is a linear operator:



Covariance of a Random Variable

 Measures the square expected deviation from the mean:



Estimation from Data

 Observations:

 Sample Mean:

 Sample Covariance:
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The State Estimation problem

 We want to estimate the world state x from:

 Sensor measurements z and

 Controls u

 We need to model the relationship between these random variables, i.e:



Causal vs. Diagnostic Reasoning

Is diagnostic

Is causal

 Diagnostic reasoning is typically what we need.

 Often causal knowledge is easier to obtain.

 Bayes rule allows us to use causal knowledge in diagnostic reasoning.



Bayes rule

 Definition of conditional probability:

 Bayes rule:

Observation likelihood Prior on world state

Prior on sensor observations



Normalization

 Direct computation of P(z) can be difficult.

 Idea: compute improper distribution, normalize afterwards.

 STEP 1:

 STEP 2:

 STEP 3:



Example: Sensor Measurement

 Quadrotor seeks the Landing Zone

 The landing zone is marked with many bright lamps

 The quadrotor has a light sensor.



Example: Sensor Measurement

 Binary sensor

 Binary world state

 Sensor model

 Prior on world state

 Assume: robot observes light, i.e.

 What is the probability that

the robot is above the landing zone.



Example: Sensor Measurement

 Sensor model:

 Prior on world state:

 Probability after observation (using Bayes):
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Markov Assumption

 Observations depend only on current state

 Current state depends only on previous state and current action



Markov Chain

 A Markov Chain is a stochastic process where, given the present state, the

past and the future states are independent.



Underlying Assumptions

 Static world

 Independent noise

 Perfect model, no approximation errors



Bayes Filter

 Given

 Sequence of observations and actions:

 Sensor model:

 Action model:

 Prior probability of the system state:

 Desired

 Estimate of the state of the dynamic system:

 Posterior of the state is also called belief:



Bayes Filter Algorithm

 For each time step, do:

 Apply motion model:

 Apply sensor model:

 η is a normalization factor to ensure that the probability is maximum 1.
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Kalman Filter

 Bayes filter is a useful tool for state estimation.

 Histogram filter with grid representation is not very efficient.

 How can we represent the state more efficiently?



Kalman Filter

 Univariate distribution

mean

Variance (squared 

standard deviation)



Kalman Filter

 Multivariate normal distribution:

 Mean:

 Covariance:

 Probability density function:



Properties of Normal Distributions

 Linear transformation – remains Gaussian

 Intersection of two Gaussians – remains Gaussian



Linear Process Model

 Consider a time-discrete stochastic process (Markov chain)



Linear Process Model

 Consider a time-discrete stochastic process

 Represent the estimated state (belief) with a Gaussian

 Assume that the system evolves linearly over time, then depends linearly on

the controls, and has zero-mean, normally distributed process noise

 With



Linear Observations

 Further, assume we make observations that depend linearly on the state and

that are perturbed zero-mean, normally distributed observation noise

 With



Kalman Filter

 Estimates the state xt of a discrete-time controlled process that is governed

by the linear stochastic difference equation

 And (linear) measurements of the state

 With and



Kalman Filter

 State

 Controls

 Observations

 Process equation

 Measurement equation

nxn nxl

nxk



Kalman Filter

 Initial belief is Gaussian

 Next state is also Gaussian (linear transformation)

 Observations are also Gaussian



Recall: Bayes Filter Algorithm

 For each step, do:

 Apply motion model

 Apply sensor model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply motion model



From Bayes Filter to Kalman Filter

 For each step, do:

 Apply sensor model

 With (Kalman Gain)



From Bayes Filter to Kalman Filter

old mean Kalman 

Gain

Blends between our previous estimate and the discrepancy between our 

sensor observations and our predictions.

The degree to which we believe in our sensor observations is the Kalman Gain. 

And this depends on a formula based on the errors of sensing etc. In fact it 

depends on the ratio between our uncertainty Σ and the uncertainty of our 

sensor observations R. 



Kalman Filter Algorithm

 For each step, do:

 Apply motion model (prediction step)

 Apply sensor model (correction step)

 With

Prediction & Correction steps 

can happen in any order.



Kalman Filter Algorithm
Prediction & Correction steps 

can happen in any order.

Prediction Correction
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These slides relied on the lectures from C. Stachniss, J. Sturm and the book “Probabilistic Robotics” from Thurn et al. 



Kalman Filter Assumptions

 Gaussian distributions and noise

 Linear motion and observation model

 What if this is not the case?



Linearity Assumption Revisited



Nonlinear Function



Nonlinear Dynamical Systems

 Real-life robots are mostly nonlinear systems.

 The motion equations are expressed as nonlinear differential (or difference) equations:

 Also leading to a nonlinear observation function:



Taylor Expansion

 Solution: approximate via linearization of both functions

 Motion Function:

 Observation Function:



Reminder: Jacobian Matrix

 It is a non-square matrix mxn in general

 Given a vector-valued function:

 The Jacobian matrix is defined as:



Extended Kalman Filter

 For each time step, do:

 Apply Motion Model:

 Apply Sensor Model:

where



Linearity Assumption Revisited



Nonlinear Function



EKF Linearization (1)



EKF Linearization (2)



EKF Linearization (3)



Linearized Motion Model

 The linearized model leads to:

 describes the noise of the motion.



EKF Algorithm

KF vs EKF



EKF Summary

 Extension of the Kalman Filter.

 One way to deal with nonlinearities.

 Performs local linearizations.

 Works well in practice for moderate nonlinearities.

 Large uncertainty leads to increased approximation error.



EKF Discussion

IMU



EKF Discussion

IMU + Compass GPS



EKF Discussion

IMU + Compass Camera



Thank you! 
Please ask your question!


