Autonomous Mobile Robot Design

Topic: Particle Filter for Localization

Dr. Kostas Alexis (CSE)

These slides relied on the lectures from C. Stachniss, and the book “Probabilistic Robotics” from Thrun et al.
Gaussian Filters

- The Kalman Filter (and its variants) can only model **Gaussian distributions**.

\[
p(x) = \frac{1}{\sqrt{2\pi det(\Sigma)}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)
\]
Motivation

Goal: enable us to deal with arbitrary distributions
Key idea: Samples

- Use **multiple samples** to represent arbitrary distributions
Key idea: Samples

- Use **multiple samples** to represent arbitrary distributions
Particle Set

- Set of weighted samples

\[X = \{ \langle x[j], w[j] \rangle \}_{j=1,\ldots,J} \]

The samples represent the posterior:

\[p(x) = \sum_{j=1}^{J} w[j] \delta_{x[j]}(x) \]

- state hypothesis
- importance weight
- Delta-Dirac distribution
Particles for Approximation

- Particles for function approximation

- The more particles that fall into an interval, the higher its probability density
 - How to obtain such samples?
Particles for Approximation

For certain distributions (e.g. Gaussian) we may have closed-form solutions on how to take samples.

- What about the other distributions?

\[x \leftarrow \frac{1}{2} \sum_{i=1}^{12} \text{rand}(-\sigma, \sigma) \]
Importance Sampling Principle

- We can use a different distribution g to generate samples from f
- Account for the "differences between g and f" using a weight $w = f/g$
- Target f
- Proposal g
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$
Importance Sampling Principle

- proposal(x)
- target(x)
- samples

probability / weight

X
Particle Filter

- Recursive Bayes Filter
- Non-parametric approach
- Models the distribution by samples
- **Prediction:** draw from the “proposal” distribution
- **Correction:** weighting by the ratio of the “target” and the “proposal” distributions

- The more samples we use, the better the estimate can get
Particle Filter Algorithm

- **Sample the particles** using the proposal distribution

 \[x_t^{[i]} \sim \pi(x_t | \ldots) \]

- **Compute the importance weights**

 \[w_t^{[i]} = \frac{target(x_t^{[i]})}{proposal(x_t^{[i]})} \]

- **Resampling:** “Replace unlikely samples by more likely ones”
Particle Filter Algorithm

- \(\text{Particle_Filter}(X_{t-1}, u_t, z_t) \)

 - \(\bar{X}_t = X_t = 0 \)

 - \(\text{for} \ m = 1 \text{ to } M \text{ do:} \)
 - \(\text{Sample} \ x_t^{[m]} \sim \pi(x_t) \)
 - \(w_t^{[m]} = \frac{p(x_t^{[m]})}{\pi(x_t^{[m]})} \bar{X}_t = \bar{X}_t + \left(x_t^{[m]}, w_t^{[m]} \right) \)
 - \(\bar{X}_t = \bar{X}_t + \left(x_t^{[m]}, w_t^{[m]} \right) \)
 - \(\text{endfor} \)

 - \(\text{for} \ m = 1 \text{ to } M \text{ do:} \)
 - \(\text{Draw} \ I \text{ with probability proportional to } w_t^{[i]} \)
 - \(\text{Add} \ x_t^{[i]} \text{ to } X_t \)
 - \(\text{endfor} \)

- return \(X_t \)
Monte Carlo Localization

- Each particle is a **pose hypothesis**
- Proposal is the motion model

\[x_t^{[i]} \sim p(x_t \mid x_{t-1}, u_t) \]

- Correction via the observation model

\[w_t^{[i]} = \frac{target}{proposal} \propto p(z_t \mid x_t, m) \]
Particle Filter Algorithm

- \textbf{Particle_Filter}(X_{t-1}, u_t, z_t)

- \Bar{X}_t = X_t = 0

- \textbf{for} m = 1 \textbf{to} M \textbf{do}:
 - \textbf{Sample} \(x_t^m \sim p(x_t|u_t, x_{t-1}^m) \)
 - \(w_t^m = p(z_t|x_t^m) \)
 - \(\Bar{X}_t = \Bar{X}_t + \left(x_t^m, w_t^m \right) \)

- \textbf{endfor}

- \textbf{for} m = 1 \textbf{to} M \textbf{do}:
 - \textbf{Draw} I with probability proportional to \(w_t^i \)
 - \textbf{Add} \(x_t^i \) to \(X_t \)

- \textbf{endfor}

- \textbf{return} \(X_t \)
Application: Particle Filter for Localization

- Assumption of existence of a known map
Sample-based localization
Monte Carlo Localization in Action
Resampling

- Draw sample i with probability $w_t^{[i]}$ – Repeat J times.
- Informal: “replace unlikely samples by more likely ones”
- **Survival of the fittest**
- “Trick” to avoid that many samples cover unlikely states
- Needed as we have a limited number of samples
Resampling

- Roulette wheel
- Binary search
- $O(n \log n)$

- Stochastic universal sampling
- Low variance
- $O(n)$
Particle Filter Algorithm

- **Low_Variance_Resampling**(X_t, W_t)
 - $\bar{X}_t = 0$
 - $r = \text{rand}(0; M^{-1})$
 - $c = w_t^{[1]}$
 - $i = 1$
 - **for** $m = 1$ to M **do**:
 - $U = r + (m - 1)M^{-1}$
 - **while** $U > c$
 - $i = i + 1$
 - $c = c + w_t^{[i]}$
 - **endwhile**
 - **add** $x_t^{[i]}$ to \bar{X}_t
 - **endfor**
 - return \bar{X}_t
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map

motion update
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Example

- Assumption of existence of a known map
Summary – Particle Filters

- Particle filters are non-parametric
- Posterior is represented by a set of weighted samples
- Not limited to Gaussians
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Works well in low-dimensional spaces
How does this apply to my project?

- State estimation is the way to use robot sensors to infer the robot state. You may use it for estimating your robot pose or its map, to track and object and be able to follow it etc.
Find out more

Thank you!

Please ask your question!