Aerial Robotic Autonomy: Deep-dive Topics (2024)
Disclaimer: This is a partially biased literature. Certain aspects of it focus on work of the lab with the purpose to be able to provide course students with code implementations of the work.
Multirotor Modeling
- Mahony, R., Kumar, V. and Corke, P., 2012. Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE robotics & automation magazine, 19(3), pp.20-32.
- Papachristos, C., Dang, T., Khattak, S., Mascarich, F., Khedekar, N. and Alexis, K., 2018. Modeling, control, state estimation and path planning methods for autonomous multirotor aerial robots. Foundations and Trends® in Robotics, 7(3), pp.180-250.
State Estimation
Prime resources for State Estimation for Robotics:
- Barfoot, T.D., 2017. State estimation for robotics. Cambridge University Press.
- Kay, S.M., 1993. Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Inc..
- Särkkä, S., 2013. Bayesian filtering and smoothing (No. 3). Cambridge University Press.
- Sola, J., Deray, J. and Atchuthan, D., 2018. A micro Lie theory for state estimation in robotics. arXiv preprint arXiv:1812.01537.
- Chirikjian, G.S., 2009. Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results and Geometric Methods. Springer Science & Business Media.
- Absil, P.A., Mahony, R. and Sepulchre, R., 2009. Optimization algorithms on matrix manifolds. Princeton University Press.
- Koller, D. and Friedman, N., 2009. Probabilistic graphical models: principles and techniques. MIT press.
- Dellaert, F. and Kaess, M., 2017. Factor graphs for robot perception. Foundations and Trends® in Robotics, 6(1-2), pp.1-139.
Inertial Measurement Unit (IMU) Modeling
- Trawny, N. and Roumeliotis, S.I., 2005. Indirect Kalman filter for 3D attitude estimation. University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, 2, p.2005.
- Woodman, O.J., 2007. An introduction to inertial navigation (No. UCAM-CL-TR-696). University of Cambridge, Computer Laboratory.
- Goel, A., Islam, A.U., Ansari, A., Kouba, O. and Bernstein, D.S., 2021. An Introduction to Inertial Navigation From the Perspective of State Estimation [Focus on Education]. IEEE Control Systems Magazine, 41(5), pp.104-128.
Visual-Inertial Odometry
- Sa, I., Kamel, M., Burri, M., Bloesch, M., Khanna, R., Popović, M., Nieto, J. and Siegwart, R., 2017. Build your own visual-inertial drone: A cost-effective and open-source autonomous drone. IEEE Robotics & Automation Magazine, 25(1), pp.89-103.
- Von Stumberg, L., Usenko, V. and Cremers, D., 2018, May. Direct sparse visual-inertial odometry using dynamic marginalization. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2510-2517). IEEE.
- Engel, J., Koltun, V. and Cremers, D., 2017. Direct sparse odometry. IEEE transactions on pattern analysis and machine intelligence, 40(3), pp.611-625.
- Khattak, S., Papachristos, C. and Alexis, K., 2020. Keyframe‐based thermal–inertial odometry. Journal of Field Robotics, 37(4), pp.552-579.
- Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R. and Furgale, P., 2015. Keyframe-based visual–inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 34(3), pp.314-334.
- Bloesch, M., Omari, S., Hutter, M. and Siegwart, R., 2015, September. Robust visual inertial odometry using a direct EKF-based approach. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 298-304). IEEE.
- Forster, C., Pizzoli, M. and Scaramuzza, D., 2014, May. SVO: Fast semi-direct monocular visual odometry. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 15-22). IEEE.
- Scaramuzza, D. and Fraundorfer, F., 2011. Visual odometry [tutorial]. IEEE robotics & automation magazine, 18(4), pp.80-92.
- Fraundorfer, F. and Scaramuzza, D., 2012. Visual odometry: Part ii: Matching, robustness, optimization, and applications. IEEE Robotics & Automation Magazine, 19(2), pp.78-90.
Control
- Lee, T., Leok, M. and McClamroch, N.H., 2010, December. Geometric tracking control of a quadrotor UAV on SE (3). In 49th IEEE conference on decision and control (CDC) (pp. 5420-5425). IEEE.
- Kamel, M., Alexis, K., Achtelik, M. and Siegwart, R., 2015, September. Fast nonlinear model predictive control for multicopter attitude tracking on SO (3). In 2015 IEEE conference on control applications (CCA) (pp. 1160-1166). IEEE.
- Romero, A., Sun, S., Foehn, P. and Scaramuzza, D., 2022. Model predictive contouring control for time-optimal quadrotor flight. IEEE Transactions on Robotics, 38(6), pp.3340-3356.
- Kamel, M., Stastny, T., Alexis, K. and Siegwart, R., 2017. Model predictive control for trajectory tracking of unmanned aerial vehicles using robot operating system. Robot Operating System (ROS) The Complete Reference (Volume 2), pp.3-39.
Robot Learning
- François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G. and Pineau, J., 2018. An introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11(3-4), pp.219-354.
- Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M., Koltun, V. and Scaramuzza, D., 2023. Champion-level drone racing using deep reinforcement learning. Nature, 620(7976), pp.982-987.
- Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O., 2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
- Kulkarni, M. and Alexis, K., 2024. Reinforcement learning for collision-free flight exploiting deep collision encoding. arXiv preprint arXiv:2402.03947.
- Kober, J., Bagnell, J.A. and Peters, J., 2013. Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11), pp.1238-1274.
- Brunke, L., Greeff, M., Hall, A.W., Yuan, Z., Zhou, S., Panerati, J. and Schoellig, A.P., 2022. Safe learning in robotics: From learning-based control to safe reinforcement learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(1), pp.411-444.
- Kulkarni, M., Nguyen, H. and Alexis, K., 2023, October. Semantically-enhanced deep collision prediction for autonomous navigation using aerial robots. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3056-3063). IEEE.
- Nguyen, H., Andersen, R., Boukas, E. and Alexis, K., 2024. Uncertainty-aware visually-attentive navigation using deep neural networks. The International Journal of Robotics Research, 43(6), pp.840-872.
- Harms, M., Kulkarni, M., Khedekar, N., Jacquet, M. and Alexis, K., 2024. Neural Control Barrier Functions for Safe Navigation. arXiv preprint arXiv:2407.19907.
Path Planning
- LaValle, S., 1998. Rapidly-exploring random trees: A new tool for path planning. Research Report 9811.
- Karaman, S. and Frazzoli, E., 2011. Incremental sampling-based algorithms for optimal motion planning.
- Dang, T., Tranzatto, M., Khattak, S., Mascarich, F., Alexis, K. and Hutter, M., 2020. Graph‐based subterranean exploration path planning using aerial and legged robots. Journal of Field Robotics, 37(8), pp.1363-1388.
- Kulkarni, M., Dharmadhikari, M., Tranzatto, M., Zimmermann, S., Reijgwart, V., De Petris, P., Nguyen, H., Khedekar, N., Papachristos, C., Ott, L. and Siegwart, R., 2022, May. Autonomous teamed exploration of subterranean environments using legged and aerial robots. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 3306-3313). IEEE.
- Dharmadhikari, M., Dang, T., Solanka, L., Loje, J., Nguyen, H., Khedekar, N. and Alexis, K., 2020, May. Motion primitives-based path planning for fast and agile exploration using aerial robots. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 179-185). IEEE.
- Bircher, A., Kamel, M., Alexis, K., Oleynikova, H. and Siegwart, R., 2016, May. Receding horizon" next-best-view" planner for 3d exploration. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 1462-1468). IEEE.
NB! The course material is currently being added!