Autonomous Robots Lab
  • Home
  • News
  • Research
    • Autonomous Navigation and Exploration
    • Fixed-Wing UAVs
    • Agile and Physical Interaction Control
    • Localization and 3D Reconstruction
    • Subterranean Robotics
    • Collision-tolerant Aerial Robots
    • Marine Robotics
    • Intelligent Mobility >
      • Student Projects
      • Electric Bus Datasets
    • Robotics for Nuclear Sites
    • Degerminator
    • Autonomous Robots Arena
    • Code
    • Media
    • Research Presentations
    • Projects
  • Publications
  • Group
    • People
    • Research Collaborators
    • Positions
  • Education
    • Introduction to Aerial Robotics >
      • Online Textbook >
        • Modeling >
          • Frame Rotations and Representations
          • Multirotor Dynamics
        • State Estimation >
          • Inertial Sensors
          • Batch Discrete-Time Estimation
          • The Kalman Filter
        • Flight Control >
          • PID Control
          • LQR Control
          • Linear Model Predictive Control
        • Motion Planning >
          • Holonomic Vehicle BVS
          • Dubins Airplane
          • Collision-free Navigation
          • Structural Inspection Path Planning
        • Simulation Tools >
          • Simulations with SimPy
          • MATLAB & Simulink
          • RotorS Simulator >
            • RotorS Simulator Video Examples
      • Lecture Slides
      • Literature and Links
      • RotorS Simulator
      • Student Projects
      • Homework Assignments
      • Independent Study
      • Video Explanations
      • Syllabus
      • Grade Statistics
    • Autonomous Mobile Robot Design >
      • Lecture Slides
      • Semester Projects
      • Code Repository
      • Literature and Links
      • RotorS Simulator
      • Video Explanations
      • Resources for Semester Projects
      • Syllabus
    • Robotics for DDD Applications
    • CS302 - Data Structures
    • Student Projects >
      • Robot Competitions
      • Undergraduate Researchers Needed
      • ConstructionBots - Student Projects
    • EiT TTK4854 - Robotic Ocean Waste Removal
    • Aerial Robotic Autonomy >
      • Breadth Topics
      • Deep-dive Topics
      • Literature
    • Robotics Seminars
    • Robotics Days
    • Outreach >
      • Drones Demystified! >
        • Lecture Slides
        • Code Repository
        • Video Explanations
        • RotorS Simulator
        • Online Textbook
      • Autonomous Robots Camp >
        • RotorS Simulator
      • Outreach Student Projects
    • BadgerWorks >
      • General Study Links
      • Learn ROS
      • SubT-Edu
  • Resources
    • Autonomous Robots Arena
    • Robot Development Space
  • Contact

Aerial Robotic Autonomy: Deep-dive Topics (2022)

Inertial Measurement Unit (IMU) Modeling

  • Trawny, N. and Roumeliotis, S.I., 2005. Indirect Kalman filter for 3D attitude estimation. University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, 2, p.2005.
  • Woodman, O.J., 2007. An introduction to inertial navigation (No. UCAM-CL-TR-696). University of Cambridge, Computer Laboratory.
  • Goel, A., Islam, A.U., Ansari, A., Kouba, O. and Bernstein, D.S., 2021. An Introduction to Inertial Navigation From the Perspective of State Estimation [Focus on Education]. IEEE Control Systems Magazine, 41(5), pp.104-128.

Visual-Inertial Odometry

  • Sa, I., Kamel, M., Burri, M., Bloesch, M., Khanna, R., Popović, M., Nieto, J. and Siegwart, R., 2017. Build your own visual-inertial drone: A cost-effective and open-source autonomous drone. IEEE Robotics & Automation Magazine, 25(1), pp.89-103.
  • Von Stumberg, L., Usenko, V. and Cremers, D., 2018, May. Direct sparse visual-inertial odometry using dynamic marginalization. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2510-2517). IEEE.
  • Engel, J., Koltun, V. and Cremers, D., 2017. Direct sparse odometry. IEEE transactions on pattern analysis and machine intelligence, 40(3), pp.611-625.
  • Khattak, S., Papachristos, C. and Alexis, K., 2020. Keyframe‐based thermal–inertial odometry. Journal of Field Robotics, 37(4), pp.552-579.
  • Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R. and Furgale, P., 2015. Keyframe-based visual–inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 34(3), pp.314-334.
  • Bloesch, M., Omari, S., Hutter, M. and Siegwart, R., 2015, September. Robust visual inertial odometry using a direct EKF-based approach. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 298-304). IEEE.
  • Forster, C., Pizzoli, M. and Scaramuzza, D., 2014, May. SVO: Fast semi-direct monocular visual odometry. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 15-22). IEEE.
  • Scaramuzza, D. and Fraundorfer, F., 2011. Visual odometry [tutorial]. IEEE robotics & automation magazine, 18(4), pp.80-92.
  • Fraundorfer, F. and Scaramuzza, D., 2012. Visual odometry: Part ii: Matching, robustness, optimization, and applications. IEEE Robotics & Automation Magazine, 19(2), pp.78-90.

NB! The course material is currently being added!

Proudly powered by Weebly