Autonomous Robots Lab
  • Home
  • News
  • Research
    • Autonomous Navigation and Exploration
    • Fixed-Wing UAVs
    • Agile and Physical Interaction Control
    • Localization and 3D Reconstruction
    • Subterranean Robotics
    • Collision-tolerant Aerial Robots
    • Marine Robotics
    • Intelligent Mobility >
      • Student Projects
      • Electric Bus Datasets
    • Robotics for Nuclear Sites
    • Degerminator
    • Autonomous Robots Arena
    • Code
    • Media
    • Research Presentations
    • Projects
  • Publications
  • Group
    • People
    • Research Collaborators
    • Positions
  • Education
    • Introduction to Aerial Robotics >
      • Online Textbook >
        • Modeling >
          • Frame Rotations and Representations
          • Multirotor Dynamics
        • State Estimation >
          • Inertial Sensors
          • Batch Discrete-Time Estimation
          • The Kalman Filter
        • Flight Control >
          • PID Control
          • LQR Control
          • Linear Model Predictive Control
        • Motion Planning >
          • Holonomic Vehicle BVS
          • Dubins Airplane
          • Collision-free Navigation
          • Structural Inspection Path Planning
        • Simulation Tools >
          • Simulations with SimPy
          • MATLAB & Simulink
          • RotorS Simulator >
            • RotorS Simulator Video Examples
      • Lecture Slides
      • Literature and Links
      • RotorS Simulator
      • Student Projects
      • Homework Assignments
      • Independent Study
      • Video Explanations
      • Syllabus
      • Grade Statistics
    • Autonomous Mobile Robot Design >
      • Lecture Slides
      • Semester Projects
      • Code Repository
      • Literature and Links
      • RotorS Simulator
      • Video Explanations
      • Resources for Semester Projects
      • Syllabus
    • Robotics for DDD Applications
    • CS302 - Data Structures
    • Student Projects >
      • Robot Competitions
      • Undergraduate Researchers Needed
      • ConstructionBots - Student Projects
    • EiT TTK4854 - Robotic Ocean Waste Removal
    • Aerial Robotic Autonomy >
      • Breadth Topics
      • Deep-dive Topics
      • Literature
    • Robotics Seminars
    • Robotics Days
    • Outreach >
      • Drones Demystified! >
        • Lecture Slides
        • Code Repository
        • Video Explanations
        • RotorS Simulator
        • Online Textbook
      • Autonomous Robots Camp >
        • RotorS Simulator
      • Outreach Student Projects
    • BadgerWorks >
      • General Study Links
      • Learn ROS
      • SubT-Edu
  • Resources
    • Autonomous Robots Arena
    • Robot Development Space
  • Contact

Rotors Simulator Video Examples

Video Examples using the RotorS Simulator

Autonomous Exploration of a Room using an Aerial Robot

This video employs our work:
A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, R. Siegwart, "Receding Horizon "Next-Best-View" Planner for 3D Exploration", IEEE International Conference on Robotics and Automation 2016 (ICRA 2016), Stockholm, Sweden

And the RotorS Simulator:
https://github.com/ethz-asl/rotors_si...

To run an autonomous exploration demo. The robot knows absolutely nothing for its environment and executes an autonomous exploration mission to perceive and map its whole volume. 

It is released as part of the multimedia material of the "CS491/691: Introduction to Aerial Robotics" course. ​It is UNLISTED at youtube and it is not for sharing. 

Autonomous Exploration of a Room using Multiple Aerial Robots

​This video employs our work:
A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, R. Siegwart, "Receding Horizon "Next-Best-View" Planner for 3D Exploration", IEEE International Conference on Robotics and Automation 2016 (ICRA 2016), Stockholm, Sweden

And the RotorS Simulator:
https://github.com/ethz-asl/rotors_si...

To run an autonomous multi-robot exploration demo. The robots knows absolutely nothing for its environment and executes an autonomous exploration mission to perceive and map its whole volume. 

It is released as part of the multimedia material of the "CS491/691: Introduction to Aerial Robotics" course. It is UNLISTED at youtube and it is not for sharing.
Proudly powered by Weebly