Autonomous Robots Lab
  • Home
  • News
  • Research
    • Autonomous Navigation and Exploration
    • Robot Perception
    • Robot Learning
    • Subterranean Robotics
    • Collision-tolerant Aerial Robots
    • Fixed-Wing UAVs
    • Agile and Physical Interaction Control
    • Underwater Autonomy
    • Intelligent Mobility
    • Robotics for Nuclear Sites
    • Autonomous Robots Arena
    • Code
    • Media
    • Research Presentations
    • Projects
  • Publications
  • Group
    • People
    • Research Collaborators
  • Education
    • Introduction to Aerial Robotics >
      • Online Textbook >
        • Modeling >
          • Frame Rotations and Representations
          • Multirotor Dynamics
        • State Estimation >
          • Inertial Sensors
          • Batch Discrete-Time Estimation
          • The Kalman Filter
        • Flight Control >
          • PID Control
          • LQR Control
          • Linear Model Predictive Control
        • Motion Planning >
          • Holonomic Vehicle BVS
          • Dubins Airplane
          • Collision-free Navigation
          • Structural Inspection Path Planning
        • Simulation Tools >
          • Simulations with SimPy
          • MATLAB & Simulink
          • RotorS Simulator >
            • RotorS Simulator Video Examples
      • Lecture Slides
      • Literature and Links
      • RotorS Simulator
      • Student Projects
      • Homework Assignments
      • Independent Study
      • Video Explanations
      • Syllabus
      • Grade Statistics
    • Autonomous Mobile Robot Design >
      • Lecture Slides
      • Semester Projects
      • Code Repository
      • Literature and Links
      • RotorS Simulator
      • Video Explanations
      • Resources for Semester Projects
      • Syllabus
    • Robotics for DDD Applications
    • CS302 - Data Structures
    • Student Projects >
      • Robot Competitions
      • Undergraduate Researchers Needed
      • ConstructionBots - Student Projects
    • EiT TTK4854 - Robotic Ocean Waste Removal
    • Aerial Robotic Autonomy >
      • Breadth Topics
      • Deep-dive Topics
      • Project & Assignments
      • Literature
    • Robotics Seminars
    • Robotics Days
    • Outreach >
      • Drones Demystified! >
        • Lecture Slides
        • Code Repository
        • Video Explanations
        • RotorS Simulator
        • Online Textbook
      • Autonomous Robots Camp >
        • RotorS Simulator
      • Outreach Student Projects
    • BadgerWorks >
      • General Study Links
      • Learn ROS
      • SubT-Edu
  • Resources
    • Autonomous Robots Arena
    • Robot Development Space
  • Contact
Anomaly Detection Dataset​
Tung Dang   Shehryar Khattak   Christos Papachristos   Kostas Alexis
Autonomous Robots Lab, University of Nevada, Reno
Picture
Abstract: In this work we address the problem of unsupervised anomaly detection and cognizant path planning for surveillance operations using aerial robots. Through one-class classification exploiting deep learned features on image data and a Bayesian technique to fuse, encode and update anomaly information on a real-time reconstructed occupancy map, the robot becomes capable of detecting and localizing anomalies in its environment. Provided this information, path planning for autonomous exploration of unknown areas and simultaneous maximization of the entropy of sensor observations over abnormal regions is developed. The method is verified experimentally through field deployments above a desert-like environment and in a parking lot. Furthermore, analysis results on the suitability of different deep learning-based and hand-engineered features for anomaly detection tasks are presented.

Publication

T. Dang, S. Khattak, C. Papachristos, K. Alexis, "Anomaly Detection and Cognizant Path Planning for Surveillance Operations using Aerial Robots", International Conference on Unmanned Aircraft Systems (ICUAS), June 11-14, 2019, Atlanta, GA, USA

Video

Dataset

This dataset serves to provide open access to a dataset for anomaly detection using aerial robots. The dataset accompanies the paper submission "Anomaly Detection and Cognizant Path Planning for Surveillance Operations using Aerial Robots".
​
 
Relevant Downloads
  • Desert Dataset (Training and Test Data) [Download]
  • Parking Lot Dataset (Training and Test Data) [Download]
  • Extracted Images from Parking Lot Mission [Download]
Proudly powered by Weebly