Autonomous Robots Lab
  • Home
  • News
  • Research
    • Autonomous Navigation and Exploration
    • Robot Perception
    • Robot Learning
    • Subterranean Robotics
    • Collision-tolerant Aerial Robots
    • Fixed-Wing UAVs
    • Agile and Physical Interaction Control
    • Underwater Autonomy
    • Intelligent Mobility
    • Robotics for Nuclear Sites
    • Autonomous Robots Arena
    • Code
    • Media
    • Research Presentations
    • Projects
  • Publications
  • Group
    • People
    • Research Collaborators
  • Education
    • Introduction to Aerial Robotics >
      • Online Textbook >
        • Modeling >
          • Frame Rotations and Representations
          • Multirotor Dynamics
        • State Estimation >
          • Inertial Sensors
          • Batch Discrete-Time Estimation
          • The Kalman Filter
        • Flight Control >
          • PID Control
          • LQR Control
          • Linear Model Predictive Control
        • Motion Planning >
          • Holonomic Vehicle BVS
          • Dubins Airplane
          • Collision-free Navigation
          • Structural Inspection Path Planning
        • Simulation Tools >
          • Simulations with SimPy
          • MATLAB & Simulink
          • RotorS Simulator >
            • RotorS Simulator Video Examples
      • Lecture Slides
      • Literature and Links
      • RotorS Simulator
      • Student Projects
      • Homework Assignments
      • Independent Study
      • Video Explanations
      • Syllabus
      • Grade Statistics
    • Autonomous Mobile Robot Design >
      • Lecture Slides
      • Semester Projects
      • Code Repository
      • Literature and Links
      • RotorS Simulator
      • Video Explanations
      • Resources for Semester Projects
      • Syllabus
    • Robotics for DDD Applications
    • CS302 - Data Structures
    • Student Projects >
      • Robot Competitions
      • Undergraduate Researchers Needed
      • ConstructionBots - Student Projects
    • EiT TTK4854 - Robotic Ocean Waste Removal
    • Aerial Robotic Autonomy >
      • Breadth Topics
      • Deep-dive Topics
      • Project & Assignments
      • Literature
    • Robotics Seminars
    • Robotics Days
    • Outreach >
      • Drones Demystified! >
        • Lecture Slides
        • Code Repository
        • Video Explanations
        • RotorS Simulator
        • Online Textbook
      • Autonomous Robots Camp >
        • RotorS Simulator
      • Outreach Student Projects
    • BadgerWorks >
      • General Study Links
      • Learn ROS
      • SubT-Edu
  • Resources
    • Autonomous Robots Arena
    • Robot Development Space
  • Contact
The Reconfigurable Aerial Robotic Chain - Manipulator
This page is dedicated to the Aerial Robotic Chain (ARC) and the Aerial Robotic Chain Manipulator. ARC corresponds to a new reconfigurable robotic system of systems consisting of multilinked micro aerial vehicles that presents the ability to cross narrow sections, morph its shape, ferry significant payloads, offer the potential of distributed sensing and processing, and enable system extendability. Stay tuned as more results are coming! 

Appendix for Modeling and Control of the Aerial Robotic Chain

Aerial Robotic Chain Manipulator - Appendix of "Forceful Aerial Manipulation based on an Aerial Robotic Chain: Hybrid Modeling and Control"
  • Download

Aerial Robotic Chain - Appendix for Modeling & Control Assumptions
  • Download 
Proudly powered by Weebly