Autonomous Robots Lab
  • Home
  • News
  • Research
    • Autonomous Navigation and Exploration
    • Fixed-Wing UAVs
    • Agile and Physical Interaction Control
    • Localization and 3D Reconstruction
    • Subterranean Robotics
    • Collision-tolerant Aerial Robots
    • Marine Robotics
    • Intelligent Mobility >
      • Student Projects
      • Electric Bus Datasets
    • Robotics for Nuclear Sites
    • Degerminator
    • Autonomous Robots Arena
    • Code
    • Media
    • Research Presentations
    • Projects
  • Publications
  • Group
    • People
    • Research Collaborators
    • Positions
  • Education
    • Introduction to Aerial Robotics >
      • Online Textbook >
        • Modeling >
          • Frame Rotations and Representations
          • Multirotor Dynamics
        • State Estimation >
          • Inertial Sensors
          • Batch Discrete-Time Estimation
          • The Kalman Filter
        • Flight Control >
          • PID Control
          • LQR Control
          • Linear Model Predictive Control
        • Motion Planning >
          • Holonomic Vehicle BVS
          • Dubins Airplane
          • Collision-free Navigation
          • Structural Inspection Path Planning
        • Simulation Tools >
          • Simulations with SimPy
          • MATLAB & Simulink
          • RotorS Simulator >
            • RotorS Simulator Video Examples
      • Lecture Slides
      • Literature and Links
      • RotorS Simulator
      • Student Projects
      • Homework Assignments
      • Independent Study
      • Video Explanations
      • Syllabus
      • Grade Statistics
    • Autonomous Mobile Robot Design >
      • Lecture Slides
      • Semester Projects
      • Code Repository
      • Literature and Links
      • RotorS Simulator
      • Video Explanations
      • Resources for Semester Projects
      • Syllabus
    • Robotics for DDD Applications
    • CS302 - Data Structures
    • Student Projects >
      • Robot Competitions
      • Undergraduate Researchers Needed
      • ConstructionBots - Student Projects
    • EiT TTK4854 - Robotic Ocean Waste Removal
    • Aerial Robotic Autonomy >
      • Breadth Topics
      • Deep-dive Topics
      • Literature
    • Robotics Seminars
    • Robotics Days
    • Outreach >
      • Drones Demystified! >
        • Lecture Slides
        • Code Repository
        • Video Explanations
        • RotorS Simulator
        • Online Textbook
      • Autonomous Robots Camp >
        • RotorS Simulator
      • Outreach Student Projects
    • BadgerWorks >
      • General Study Links
      • Learn ROS
      • SubT-Edu
  • Resources
    • Autonomous Robots Arena
    • Robot Development Space
  • Contact

Team CERBERUS awarded DARPA Subterranean Challenge grant!

10/1/2018

0 Comments

 
Picture
The University of Nevada, Reno, leading a team of international partners that includes ETH Zurich, University of California, Berkeley, Sierra Nevada Corporation and Flyability, has been awarded the prestigious DARPA Subterranean Challenge grant for the proposal “CERBERUS: CollaborativE walking & flying RoBots for autonomous ExploRation in Underground Settings.”
 
Project CERBERUS will bring groundbreaking robotic solutions into the field of subterranean deployments. CERBERUS envisions a system of walking and flying robots equipped with multi-modal perception systems, navigation and mapping autonomy, and self-organized networked communications that enable robust and reliable navigation, exploration, mapping, and object search in complex, sensing-degraded, stringent, dynamic, and rough underground settings. The robotic embodiment of these capabilities will enable unprecedented levels of operational awareness in such environments, and will thus become a game changer for a large variety of subterranean operations in both civilian and military domains.
 
Team CERBERUS is based on the collaboration between a team of experts that for the last years have been at the forefront of walking and flying robots research. This includes: Professor Kostas Alexis, director of the Autonomous Robots Lab at the University of Nevada, Reno; Professor Marco Hutter of the Robotic Systems Lab at ETH Zurich; Professor Roland Siegwart of the Autonomous Systems Lab at ETH Zurich; Professor Mark Mueller of the HiPeR Lab at U.C. Berkeley; Sierra Nevada Corporation based in Sparks, Nevada and Flyability based in Switzerland. The cumulative expertise of the team enables the successful development and reliable operation of the CERBERUS system in the SubT Challenge.

​In alignment with the goals and details of the DARPA SubT challenge, CERBERUS aims to achieve exciting and superior performance results in a sequence of competition events that in their combination demand to facilitate resilient subterranean autonomy.
 
Those events will include the autonomous exploration and search inside a man-made tunnel network (“Tunnel Circuit”), a multi-level urban underground structure (“Urban Circuit”) and a natural cave environment (“Cave Circuit”), as well as a comprehensive test environment involving all challenges of the previously mentioned types (“Final Event”). The first circuit is scheduled for August 2019.
 
Our team looks forward to the novel research investigations and to breaking new ground towards resilient robotic autonomy in subterranean operations. The CERBERUS technological solution aims to be a stepping stone for complex applications in domains such as search and rescue, reconnaissance, inspection, as well as security and military tasks.
 
Project CERBERUS started on Sept. 18, and is based on funding of up to $4.275 million for the three phases of the project and the opportunity to win an additional $2 million reward at the Final Event. To find out more please visit the project website www.subt-cerberus.org and watch our concept video: https://youtu.be/1aWQPTfseIE
​
0 Comments



Leave a Reply.

    Author

    News and updates from the Autonomous Robots Lab. 

    Archives

    March 2023
    February 2023
    May 2022
    September 2021
    June 2021
    February 2021
    August 2020
    May 2020
    March 2020
    January 2020
    December 2019
    November 2019
    October 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016

    Categories

    All

    RSS Feed

Proudly powered by Weebly