Autonomous Robots Lab
  • Home
  • News
  • Research
    • Autonomous Navigation and Exploration
    • Fixed-Wing UAVs
    • Agile and Physical Interaction Control
    • Localization and 3D Reconstruction
    • Subterranean Robotics
    • Collision-tolerant Aerial Robots
    • Marine Robotics
    • Intelligent Mobility >
      • Student Projects
      • Electric Bus Datasets
    • Robotics for Nuclear Sites
    • Degerminator
    • Autonomous Robots Arena
    • Code
    • Media
    • Research Presentations
    • Projects
  • Publications
  • Group
    • People
    • Research Collaborators
    • Positions
  • Education
    • Introduction to Aerial Robotics >
      • Online Textbook >
        • Modeling >
          • Frame Rotations and Representations
          • Multirotor Dynamics
        • State Estimation >
          • Inertial Sensors
          • Batch Discrete-Time Estimation
          • The Kalman Filter
        • Flight Control >
          • PID Control
          • LQR Control
          • Linear Model Predictive Control
        • Motion Planning >
          • Holonomic Vehicle BVS
          • Dubins Airplane
          • Collision-free Navigation
          • Structural Inspection Path Planning
        • Simulation Tools >
          • Simulations with SimPy
          • MATLAB & Simulink
          • RotorS Simulator >
            • RotorS Simulator Video Examples
      • Lecture Slides
      • Literature and Links
      • RotorS Simulator
      • Student Projects
      • Homework Assignments
      • Independent Study
      • Video Explanations
      • Syllabus
      • Grade Statistics
    • Autonomous Mobile Robot Design >
      • Lecture Slides
      • Semester Projects
      • Code Repository
      • Literature and Links
      • RotorS Simulator
      • Video Explanations
      • Resources for Semester Projects
      • Syllabus
    • Robotics for DDD Applications
    • CS302 - Data Structures
    • Student Projects >
      • Robot Competitions
      • Undergraduate Researchers Needed
      • ConstructionBots - Student Projects
    • EiT TTK4854 - Robotic Ocean Waste Removal
    • Aerial Robotic Autonomy >
      • Breadth Topics
      • Deep-dive Topics
      • Literature
    • Robotics Seminars
    • Robotics Days
    • Outreach >
      • Drones Demystified! >
        • Lecture Slides
        • Code Repository
        • Video Explanations
        • RotorS Simulator
        • Online Textbook
      • Autonomous Robots Camp >
        • RotorS Simulator
      • Outreach Student Projects
    • BadgerWorks >
      • General Study Links
      • Learn ROS
      • SubT-Edu
  • Resources
    • Autonomous Robots Arena
    • Robot Development Space
  • Contact

Team CERBERUS wins the DARPA Subterranean Challenge!

9/27/2021

0 Comments

 
Picture
Team CERBERUS won the DARPA Subterranean Challenge and a $2,000,000 prize reward that comes along! Team CERBERUS is an international consortium involving the University of Nevada Reno (UNR), ETH Zurich, the Norwegian University of Science and Technology (NTNU), University of California Berkeley, University of Oxford, Flyability, and Sierra Nevada Corporation. The Team Leader is Prof. Dr. Kostas Alexis - director of the Autonomous Robots Lab at NTNU (who was before at UNR when the grant was acquired). The team leadership further involves Prof. Dr. Marco Hutter (Robotic Systems Lab, ETH Zurich), Prof. Dr. Roland Siegwart (Autonomous Systems Lab, ETH Zurich), Prof. Dr. Mark Mueller (UC Berkeley), Prof. Dr. Maurice Fallon (Oxford), Adrien Briod (Flyability), Prof. Dr. Eelke Folmer (UNR),  and Sierra Nevada Corporation’s company leaders. 

CERBERUS stands for “CollaborativE walking & flying RoBots for autonomous ExploRation in Underground Settings” and throughout the three years of the project developed a team of legged and aerial robots capable of autonomously exploring diverse subterranean environments such as underground mines and tunnels, metropolitan sub-surface infrastructure, and natural cave networks. After successfully going through the Tunnel Circuit and the Urban Circuit of the DARPA Subterranean Challenge, Team CERBERUS qualified for the Final Event (the “Cave Circuit” planned for early 2020 was canceled due to the Covid-19 pandemic). 

In the Final Event, DARPA designed an environment involving branches representing all three challenges of the “Tunnel Circuit”, the “Urban Circuit” and the “Cave Circuit”. Robots had to explore, search for objects (“artifacts”) of interest, and report their accurate location within underground tunnels, infrastructure similar to a subway, and natural caves and paths with extremely confined geometries, tough terrain, and severe visual degradation (including dense smoke). 

Team CERBERUS deployed a diverse set of robots with the prime systems being four ANYmal C legged systems. In the Prize Round of the Final Event, the team won the competition and scored 23 points by correctly detecting and localizing 23 of 40 of the artifacts DARPA had placed inside the environment. The second team, “CSIRO Data61” also scored 23 points but reported the last artifact with a slight further delay to DARPA thus the tiebraker was in favor of Team CERBERUS. The third team, “MARBLE” scored 18 points. 

The DARPA Subterranean Challenge was one of the rare types of global robotic competition events pushing the frontiers for resilient autonomy and calling teams to develop novel and innovative solutions with the capacity to help critical sectors such as search and rescue personnel and the industry in domains such as mining and beyond. The level of achievement of Team CERBERUS is best understood by looking at all the competitors in the “Systems Competition” of the Final Event. The participating teams including members from top international institutions, namely:
  • CERBERUS (Score = 23): University of Nevada, Reno, ETH Zurich, NTNU, University of California Berkeley, Oxford Robotics Institute, Flyability, Sierra Nevada Corporation
  • CSIRO Data61 (Score = 23): CSIRO, Emesent, Georgia Institute of Technology
  • MARBLE (Score = 18): University of Colorado Boulder, University of Colorado Denver, Scientific Systems Company, University of California Santa Cruz
  • Explorer (Score = 17): Carnegie Mellon University, Oregon State University
  • CoSTAR (Score = 13): NASA Jet Propulsion Laboratory, California Institute of Technology, MIT, KAIST, Lulea University of Technology
  • CTU-CRAS-NORLAB (Score = 7): Czech Technological University, Université Laval
  • Coordinated Robotics (Score = 2): Coordinated Robotics, California State University Channel Islands, Oke Onwuka, Sequoia Middle School
  • Robotika (Score = 2): Robotika International, Robotika.cz, Czech University of Life Science, Centre for Field Robotics, Cogito Team

We congratulate all members of Team CERBERUS and we are proud of this incredible and historic achievement! Most importantly, we are excited to be part of this amazing community pushing the frontier of resilient robotic autonomy in extreme environments. 

Below a video from our legged robots exploring the SubT Final Event environment:

The video below allows to best understand how the autonomous exploration of our team works:
0 Comments



Leave a Reply.

    Author

    News and updates from the Autonomous Robots Lab. 

    Archives

    March 2023
    February 2023
    May 2022
    September 2021
    June 2021
    February 2021
    August 2020
    May 2020
    March 2020
    January 2020
    December 2019
    November 2019
    October 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016

    Categories

    All

    RSS Feed

Proudly powered by Weebly